Analysis

Analysis

zambellilorenzo

November 2020-Jenuary 2021

The Real Numbers

The Irrationality of $\sqrt{2}$

Theorem 0.0.1 The is no rational number whose square is 2

Proof:assume $\sqrt{2} = p/q$ for some $p, q \in \mathbb{Z}$ with gcd(p,q) = 1

 $\begin{array}{l} \Rightarrow p^2 = 2q^2 \\ \Rightarrow p^2 \text{ is even, so } p \text{ itself is even, say } p = 2k \\ \Rightarrow 4k^2 = 2q^2 \text{ so } 2k^2 = q^2 \\ \Rightarrow q^2 \text{ is even, which bring a contradiction because we assumed that } gcd(p,q) = 1 \end{array}$

Some Preliminaries

Definition 0.0.1 (set) A set is any collection of objects. These objects are referred to as <u>elements</u> of the set

Set-Theoretic Notation:

- $A \cup B$: A union B
- $A \cap B$: A intersect B
- A^c : $\{x \in \Omega : x \notin A\} \Rightarrow$ complement of A
- $w \in \Omega$: w is an element of Ω ;
- $A \subseteq \Omega$: A is an subset of Ω
- $B \supseteq A$: B contains A (its the same of the previous);
- The set \emptyset is called empty set
- $\bigcup_{n=\mathbb{N}} A_n \Rightarrow A_1 \cup A_2 \cdots$

Theorem 0.0.2 (De Morgan's Laws) Let A and B be subsets of \mathbb{R} , then: $(A \cap B)^c = A^c \cup B^c$ and $(A \cup B)^c = A^c \cap B^c$

Proof: We begin by showing that $(A \cap B)^c \subseteq A^c \cup B^c$.

Suppose $x \in (A \cap B)^c$, which means that $x \notin (A \cap B)$. Therefore, $x \notin A \cup B$, which means that $x \in A^c \cup B^c$. Hence, $(A \cap B)^c \subseteq A^c \cup B^c$.

Our proof is now halfway done. To complete it we show the opposite subset inclusion. First we begin with an element x in the set $A^c \cup B^c$, which means that x is an element of A^c or that x is an element of B^c . Thus x is not an element of a least one of the sets A or B. So, x cannot be an element of both Aand B. This means that x is an element of $(A \cap B)^c$. Therefore, we have proved the law.

Definition 0.0.2 (Function) Given two sets A, B, a function from A to B is a rule or mapping that takes each element $x \in A$ and associates with it a single element of B. In this case, we write $f : A \to B$. Given an element $x \in A$, the expression f(x) is used to represent the element of B associated with x by f. The set A is called the domain of f. The range of f is not necessarily equal to B but refers to the subsets of B given by $\{y \in B : y = f(x) \text{ for some } x \in A\}$. That is, the set of all f-images of all the elements of A is known as the range of f. Thus, range of f is denoted by f(A). B is the co-domain.

This definition of function is more or less the one proposed by Peter Lejeune Dirichlet (1805-1859) in the 1830s.

Absolute Value

Definition 0.0.3 (Absolute Value)

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Lemma 0.0.1 $|x| = max\{x, -x\}$

Proof:

First case:

$$\begin{split} x > 0 \Rightarrow -x &\leq 0 \\ \Rightarrow -x &\leq x \\ \Rightarrow max\{-x,x\} = x = |x| \end{split}$$

Second case:

$$\begin{aligned} x < 0 &\Rightarrow -x > 0 \\ &\Rightarrow -x > x \\ &\Rightarrow max\{-x, x\} = -x = |x| \end{aligned}$$

Definition 0.0.4 (Product rule)

$$|xy| = |x| \cdot |y|$$

Proof:

- If x > 0, y > 0, then by def. |xy| = xy and by def. xy = |x||y|;
- if x = 0, y = 0 it is obvious that is true: 0 = 0;
- If x < 0, y > 0, then |xy| = (-x)y which by def. (-x) = |x|, y = |x|, therefore (-x)y = |x||y|;
- If x > 0, y > 0 same way of the previus;
- If x < 0, y < 0, then |xy| = (-x)(-y) = |x||y|

Definition 0.0.5 (quotient rule)

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$

where $y \neq 0$

Proof:

- if x = 0, y > 0, then $\left| \frac{0}{y} \right| = \frac{0}{y} = 0$;
- same for x = 0, y < 0;
- x < 0, y > 0, then $\left|\frac{x}{y}\right| = \frac{-x}{y}$ by def. $\Rightarrow \frac{|x|}{|y|}$;
- the same logic for x < 0, y < 0 and x > 0, y < 0

Inequalities

Lemma 0.0.2

$$|x| \le a \Leftrightarrow -a \le x \le a$$

Proof:

$$\begin{aligned} |x| &\leq a \Rightarrow max\{-x,x\} \leq a \\ &\Rightarrow -x \leq a, x \leq a \\ &\Rightarrow -a \leq x \leq a \end{aligned}$$

Theorem 0.0.3 (Triangle inequality)

$$|x+y| \le |x| + |y|$$

Proof:

- if x + y > 0, then $|x + y| = x + y \le |x| + y$ by lemma 1.2.1, which is the same for $y \le |y|$ therefore $|x + y| \le |x| + |y|$;
- if x + y < 0, then $|x + y| = -x y \le |x| + |y|$ by lemma 1.2.1

Hence, $|x + y| = max\{x + y, -x - y\} \le |x| + |y| \Rightarrow |x + y| \le |x| + |y|$

Theorem 0.0.4 (Reverse triangle inequalities)

$$||x| + |y|| \le |x - y|$$

Proof:

- $|x| = |x + y y| \le |x y| + |y|$ by theorem 1.2.2;
- $|x| |y| \le |x y|$ which is the same as $|y| |x| \le |y x| = |x y|$;
- $max\{|x| |y|, |y| |x|\} = ||x| + |y|| \le |x y|$

Theorem 0.0.5 Two real numbers a, b are equals if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$

Induction

Induction is used in conjunction with the natural numbers \mathbb{N} . The fundamental principle behind induction is that if S is some subset of \mathbb{N} with the property that

- (i). S contains 1 and
- (ii). whenever S contains a natural number n, it also contains n + 1,

then it must be that $S = \mathbb{N}$.

The Axiom of Completeness

Definition 0.0.6 A set $A \subseteq \mathbb{R}$ is bounded above if there exist a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbb{R}$ satisfying $l \leq a$ for every $a \in A$

Definition 0.0.7 (least upper bound) $s \in \mathbb{R}$ is called the least upper bound of $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- (i). s is an upper bound for A;
- (ii). if b is any upper bound for A, then $s \leq b$

The least upper bound is also frequently called the supremum of the set A: s = supA

Lemma 0.0.3 if s is an upper bound for A then

$$s = supA \Leftrightarrow \forall \epsilon > 0 \; \exists a \in A \; s.t. \; s - \epsilon < a$$

Proof:

(1)Let $\epsilon > 0$, then

 $s - \epsilon < s \Rightarrow s - \epsilon$ is not an upper bound for A $\Rightarrow \exists a \in A \text{ s.t. } s - \epsilon < a$

(2)Let b be any upper bound for A

if
$$b < s \Rightarrow \epsilon = s - b$$
 there exist $a \in A$ s.t
 $\Rightarrow b = s - \epsilon < s$

This bring a contradiction. Hence, $s \leq b$, which means that s = supA

Definition 0.0.8 (greatest lower bound) $i \in \mathbb{R}$ is called the greatest lower bound of $A \subseteq \mathbb{R}$ if

- (i). i is a lower bound for A
- (ii). if l is any lower bound for A then $l \leq i$

Notation:i = infA (infimum)

Lemma 0.0.4 if i is a lower bound for A then

 $i = infA \Leftrightarrow \forall \epsilon > 0 \ \exists a \in A \ s.t. \ a < i + \epsilon$

Proof:

(1)Let $\epsilon > 0$

 $i < i + \epsilon \Rightarrow i + \epsilon$ cannot be a lower bound for A $\Rightarrow \exists a \in A \text{ s.t } a < i + \epsilon$

(2)Let l be any lower bound for A

$$\begin{array}{l} \text{if } i < l \Rightarrow \epsilon = l - i \\ \Rightarrow \exists a \in A \text{ s.t. } l = \epsilon + i > a \end{array}$$

This is a contradiction, therefore $l \leq i$, which means that i = infA

Axiom of Completeness (AoC) 1 every nonempty subset of \mathbb{R} that is bounded above has a least upper bound

Consequences of completeness

Theorem 0.0.6 (The Archimedean property) Theorem:

(i). $\forall x \in \mathbb{R} \exists n \in \mathbb{N} \text{ s.t. } n > x$

(ii). $\forall y > 0 \exists n \in \mathbb{N} \ s.t \ 1/n < y$

Proof:(1) We prove the theorem by contradiction. If (1) is not true, then \mathbb{N} is bounded above.

- AoC $\Rightarrow \alpha = sup\mathbb{N}$ exists.
- $\alpha 1$ is not an upper bound for \mathbb{N} .
- There exist $n \in \mathbb{N}$ such that $\alpha 1 < n$ by lemma $1.3.1 \Rightarrow \alpha < n + 1$
- $n+1 \in \mathbb{N} \Rightarrow \alpha$ is not an upper bound for \mathbb{N} . Contradiction!

(2)

- AoC $\Rightarrow \alpha = inf\mathbb{N}$
- $\alpha + 1$ is not an lower bound for \mathbb{N}
- There exist $n \in \mathbb{N}$ such that $n < \alpha + 1$ by lemma 1.3.2
- $n-1 < \alpha$, which means that α is not a lower bound for N. Contradiction!

But there is another way to prove part (2), and it's using (i):

Let y > 0 be arbitrary and set x = 1/y. By (i) there exist $n \in \mathbb{N}$ such that n > x. Therefore $1/y < n \Rightarrow 1/n < y$

Theorem 0.0.7 (Nested Interval Property) For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$

has a non-empty intersection; that is,

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$

Proof: Define $A = \{a_n : n \in \mathbb{N}\}$

- Every b_n is an upper bound for A
- AoC $\Rightarrow x = supA \Rightarrow x \le b_n$ by def. 1.3.2
- moreover, $a_n \leq x$
- Therefore, $a_n \leq x \leq b_n$

Remark! The NIP requires the intervals to be closed!

The rational number are dense in $\ensuremath{\mathbb{R}}$

Theorem 0.0.8

$$\forall a, b \in \mathbb{R} \text{ with } a < b \ \exists r \in \mathbb{Q} \text{ s.t } a < r < b$$

*Proof:*Only case $0 \le a < b$:

- AP \Rightarrow there exist $n, m \in \mathbb{N}$ such that 1/n < b a and na < m
- we can choose this an small enough to be sandwich by $m,m-1 \Rightarrow m-1 \leq na < m$
- $m \le na + 1 < n(b \frac{1}{n}) + 1 = nb$
- hence, $m \le nb$ and na < m which means that $a < \frac{m}{n} < b$

Corollary 0.0.9 (Density of in \mathbb{R}) Given two real numbers a < b, there exists an irrational number satisfying a < t < b

Existence of square roots

Theorem 0.0.9 $\exists \alpha \in \mathbb{R} \ s.t. \ \alpha^2 = 2$

Cardinality

The term cardinality is used in mathematics to refer to the size of a set.

1-1 Correspondence

Definition 0.0.10 (A one-to-one or injective, surjective, bijective functions) A function $f: A \to B$ is

- one-to-one (1-1) if $a_1 = a_2$ in A implies that $f(a_1) = f(a_2)$ in B.
- onto or surjective if, given any $b \in B$, it is possible to find an element $a \in A$ for which f(a) = b.

• bijective if f is both injective and surjective

Definition 0.0.11 Two sets A, B have the same cardinality if there exists a bijective function $f: A \to B$

Notation: $A \sim B$

Theorem 0.0.10 \sim is an equivalence relation:

- (i). $A \sim A$
- (ii). $A \sim B \Leftrightarrow B \sim A$
- (iii). $A \sim B$ and $B \sim C \Rightarrow A \sim C$

Countable sets

Definition 0.0.12 A set A is called

- countable if $A \sim S$ for some $S \subseteq \mathbb{N}$
- uncountable *otherwise*

Lemma 0.0.5 A countable $\Leftrightarrow \exists f : A \to \mathbb{N}$ injective

Lemma 0.0.6 A countable $\Leftrightarrow \exists g : \mathbb{N} \to A$ surjective

Corollary 0.0.13

$$\left.\begin{array}{c}B \ countable\\f:A \to B \ injective\\g:A \to B \ surjective\end{array}\right\} \Rightarrow A \ countable\\ \Rightarrow B \ countable\\g \Rightarrow B \ countable\end{array}$$

Theorem 0.0.11 two parts:

- (i). The set \mathbb{Q} is countable
- (ii). the set \mathbb{R} is uncountable

Proof(ii): Assume \mathbb{R} is countable. If $g: \mathbb{N} \to \mathbb{R}$ is surjective, then

 $R = \{x_1, x_2, x_3, x_4, ...\}$ where $x_n = g(n)$

To show: $\exists x \in \mathbb{R} \text{ s.t } x \neq x_n \ \forall n \in \mathbb{N}$ Choose closed and bounded intervals as follows:

$$l_1 \quad \text{such that} \quad x_1 \notin l_1$$
$$l_2 \subseteq l_1 \quad \text{such that} \quad x_2 \notin l_2$$
$$l_3 \subseteq l_2 \quad \text{such that} \quad x_3 \notin l_3$$

NIP $\Rightarrow \exists x \in \mathbb{R} \text{ s.t. } x \in \bigcap_{n=1}^{\infty} I_n. \text{ But } x \neq x_n \text{ for all } n \in \mathbb{N} \text{ because } x_n \notin I_n.$

Corollary 0.0.14 $\mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q}$

Proof: We know that \mathbb{Q} is countable

 \mathbb{Q}^c countable $\Rightarrow \mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^c$ countable. Contradiction! That is, there are "more" irrationals than rationals

Theorem 0.0.12 If $A \subseteq B$ and B is countable, then A is either countable or finite

Theorem 0.0.13 two parts:

- (i). if $A_1, A_2, ..., A_m$ are each countable sets, then the union $A_1 \cup A_2 \cup \cdots \cup A_m$ countable
- (ii). If A_n is countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable

Cantor's Theorem

Cantor published his discovery that \mathbb{R} is uncountable in 1874.

Theorem 0.0.14 The open interval $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ is uncountable

Proof: take any $g : \mathbb{N} \to (0, 1)$, then

$$g(1) = 0.d_{11}d_{12}d_{13}d_{14}\cdots$$

$$g(2) = 0.d_{21}d_{22}d_{23}d_{24}\cdots$$

$$g(3) = 0.d_{31}d_{32}d_{33}d_{34}\cdots$$

:

Define $t \in (0, 1)$ by

$$t = 0.c_1 c_2 c_3 c_4 \cdots c_n = \begin{cases} 2 & \text{if } d_{nn} \neq 2\\ 3 & \text{if } d_{nn} = 2 \end{cases}$$

Then $t \neq g(n)$ for all $n \in \mathbb{N}$ so g is not surjective

Sequences and Series

The limit of a Sequence

Definition 0.0.15 A sequence is a function whose domain is \mathbb{N}

Definition 0.0.16 (Convergence of a Sequence) a_n converges to a if

 $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad s.t. \quad n \ge N \quad \Rightarrow \quad |a_n - a| < \epsilon$

Notation: $a = \lim a_n \text{ or } (a_n) \to a$

Definition 0.0.17 (neighborhood) For $a \in \mathbb{R}$ and $\epsilon > 0$ the set

$$V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\}$$

is called the ϵ -neighborhood of a

Definition 0.0.18 (Convergence of a sequence: topological version) A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, there exist a point in the sequence after which all of the terms are in $V_{\epsilon}(a)$. In other words, every ϵ -neighborhood contains all but a finite number of the terms of a_n :

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; s.t. \; n \ge N \; \Rightarrow \; a_n \in V_{\epsilon}(a)$$

Moral: the tail of the sequence gets trapped in $V_{\epsilon}(a)$

Theorem 0.0.15 (Uniqueness of Limits) The limit of a sequence, when it exists, must be unique

Standard limits

- $\lim 1/n^{\alpha} = 0$ $(\alpha > 0)$
- $\lim c^n = 0$ (-1 < c < 1)
- $\lim c^n n^\alpha = 0$ $(-1 < c < 1, \alpha \in \mathbb{R})$
- $\lim \sqrt[n]{c} = 1$ (c > 0)
- $\lim \sqrt[n]{n} = 1$
- $\lim n!/n^n = 0$

Definition 0.0.19 (divergent sequence) A sequence that does not converge is called divergent

For understand what does it mean we need to obtain a **Logical negation** from the definition of convergence.

Logical negation:

$$\exists \epsilon > 0 \text{ s.t } \forall N \in \mathbb{N} \text{ s.t. } |a_n - a| \geq \epsilon$$

Definition 0.0.20 (a_n) is bounded if

 $\exists M > 0 \quad s.t \quad |a_n| \le M \quad \forall n \in \mathbb{N}$

Theorem 0.0.16 if (a_n) is convergent $\Rightarrow (a_n)$ is bounded

Proof: let $a = \lim a_n$, then for $\epsilon = 1$ there exist $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |a_n - a| < 1$$
$$\Rightarrow ||a_n| - |a|| < 1$$
$$\Rightarrow |a_n| - |a| < 1$$
$$\Rightarrow |a_n| < 1 + |a|$$

For $M = max\{|a_1|, |a_2|, |a_3|, ..., |a_{N-1}|, 1+|a|\}$ we have

 $|a_n| \le M \quad \forall n \in \mathbb{N}$

Warning: the converse is not true!

NOTE:Theorem can be used to prove that a sequence diverges

0.1 Algebraic properties

Theorem 0.1.1 if $a = \lim a_n$ and $b = \lim b_n$ then

- (i). $\lim(ca_n) = ca \text{ where } c \in \mathbb{R}$
- (*ii*). $\lim(a_n + b_n) = a + b$
- (*iii*). $\lim(a_n b_n) = ab$
- (iv). $\lim(a_n/b_n) = a/b$ if $b \neq 0$

Proof (ii):

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)|$$

$$\leq |a_n - a| + |b_n - b|$$

Let $\epsilon > 0$ be arbitrary, then

$$\exists N_1 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |a_n - a| < \frac{1}{2}\epsilon$$

$$\exists N_2 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |a_n - a| < \frac{1}{2}\epsilon$$

Define $N = max\{N_1, N_2\}$ then

$$n \ge N \quad \Rightarrow \quad |(a_n - b_n) - (a + b)| < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$$

Proof (iii):

$$\begin{aligned} |a_n b_n - ab| &= |a_n b_n - ab_n + ab_n - ab| \\ &= |b_n (a_n - a) + a(b_n - b)| \\ &\leq |b_n (a_n - a)| + |a(b_n - b)| \\ &= |b_n||a_n - a| + |a||b_n - b| \\ &\leq M|a_n - a| + |a||b_n - b| \quad (b_n) is \ convergent \ and \ therefore \ bounded \end{aligned}$$

Let $\epsilon > 0$ be arbitrary, then

$$\exists N_1 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |a_n - a| < \frac{1}{2M} \epsilon$$

$$\exists N_2 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |b_n - b| < \frac{1}{2|a|} \epsilon$$

Define $N = max\{N_1, N_2\}$ then

$$n \ge N \quad \Rightarrow \quad |a_n b_n - ab| < \frac{1}{2M}\epsilon + \frac{1}{2|a|}\epsilon = \epsilon$$

Order properties

Theorem 0.1.2 (order limit theorem) if $\lim a_n = a$ and $\lim b_n = b$ then

 $\begin{array}{ll} (i). \ a_n \geq 0 & \forall n \in \mathbb{N} \quad \Rightarrow a \geq 0 \\ (ii). \ a_n \leq b_n & \forall n \in \mathbb{N} \quad \Rightarrow a \leq b \\ (iii). \ c \leq b_n & \forall n \in \mathbb{N} \quad \Rightarrow c \leq b \\ (iv). \ a_n \leq c & \forall n \in \mathbb{N} \quad \Rightarrow a \leq c \end{array}$

Proof (i): assume that a < 0For $\epsilon = |a|$ there exist $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow |a_n - a| < \epsilon$$

$$\Rightarrow -\epsilon < a_n - a < \epsilon$$

$$\Rightarrow a - \epsilon < a_n < a + \epsilon$$

$$\Rightarrow a_n < a + |a| = 0$$

Contradiction!

Note: Loosely speaking, limits and their properties do not depend at all on what happens at the beginning of the sequence but are *strictly* determined by

what happens when n gets large. In the language of analysis, when a property is not necessarily possessed by some finite number of initial terms but is possessed by all terms in the sequence after some point N, we say that the sequence *eventually* has this property.

Theorem 0.1.3 (Squeeze theorem) If $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, and if $\lim x_n = \lim z_n = l$, then $\lim y_n = l$ as well.

Proof: Given $\epsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that whenever $n \ge N_1, n \ge N_2$, $|x_n - l| < \epsilon$ and $|z_n - l| < \epsilon$

Choose $N = \max\{N_1, N_2\}$ then we get whenever $n \ge N$, $|x_n - l| < \epsilon$, $|z_n - l| < \epsilon$. This gives

$$-\epsilon < x_n - l \le y_n - l \le z_n - l < \epsilon$$
$$-\epsilon < y_n - l < \epsilon \Rightarrow |y_n - l| < \epsilon$$

or

If $y = \lim y_n$ then by thm $y_n \le z_n \Rightarrow y \le l$ and $x_n \le y_n \Rightarrow l \le y$. Therefore, $l \le y \le l$. Hence, y = l.

The monotone convergence theorem and infinite series

Definition 0.1.1 (a_n) is called monotone if is either

- increasing: $a_n \leq a_{n+1} \ \forall n \in \mathbb{N}$
- decreasing: $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$

Theorem 0.1.4 (Monotone converges theorem (MCT)) (a_n) bounded & monotone \Rightarrow (a_n) converges. $a = \lim a_n$ exist

Proof: $A = \{a_n : n \in \mathbb{N}\}$ is bounded Strategy of proof:

- a_n increasing $\Rightarrow \lim a_n = supA$
- a_n decreasing $\Rightarrow \lim a_n = infA$

Assume that (a_n) increases

Let $s = \sup\{a_n : n \in \mathbb{N}\}$

Let $\epsilon > 0$ be arbitrary, then $s - \epsilon$ is not an upper bound. Therefore, there exists $N \in \mathbb{N}$ s.t. $s - \epsilon < a_N$. For $n \geq N$ we have

$$s - \epsilon < a_N \le a_n \le s < s + \epsilon \quad \Rightarrow |a_n - s| < \epsilon$$

Assume that (a_n) decreases

Let $i = inf\{a_n : n \in \mathbb{N}\}$

Let $\epsilon > 0$ and arbitrary, then $i + \epsilon$ is not an lower bound. Therefore, there exist $N \in \mathbb{N}$ s.t $a_N < i + \epsilon$. For $n \ge N$ we have

$$i + \epsilon > a_N \ge a_n \ge i > i - \epsilon \quad \Rightarrow |a_n - i| < \epsilon$$

Subsequences

Definition 0.1.2 pick $n_k \in \mathbb{N}$ such that

$$1 \le n_1 < n_2 < n_3 < \cdots$$

If (a_n) is a sequence then

$$(a_{n_k}) = (a_{n_1}, a_{n_2}, a_{n_3, \dots})$$

is called a subsequence of (a_n) . Note: $n_k \ge k$ since $k \in \mathbb{N}$

Theorem 0.1.5 $\lim a_n = a \Rightarrow \lim a_{n_k} = a$

Proof: let $\epsilon > 0$ be arbitrary, then

$$\exists N \in \mathbb{N} \quad \text{s.t} \quad n \ge N \Rightarrow |a_n - a| < \epsilon \\ k \ge N \Rightarrow n_k \ge N \\ \Rightarrow |a_{n_k} - a| < \epsilon$$

Theorem 0.1.6 (Bolzano-Weierstrass theorem) Every bounded sequence has a convergent subsequence.

Proof: There exists M > 0 such that $a_n \in [-M, M]$ for all n

Bisect the closed interval [-M, M] into two closed intervals [-M, 0], [0, M]. Halving-process gives nested closed intervals

$$I_1 \supset I_2 \supset I_3 \supset \cdots$$

NIP \Rightarrow there exists $x \in \bigcap_{n=1}^{\infty} I_n$

each I_k contains infinitely many terms of the seq.

• pick $n_1 \in \mathbb{N}$ with $a_{n_1} \in I_1$

- pick $n_2 \in \mathbb{N}$ with $n_2 > n_1$ and $a_{n_2} \in I_2$
- pick $n_3 \in \mathbb{N}$ with $n_3 > n_1$ and $a_{n_3} \in I_3$

Note that

÷

$$\left. \begin{array}{cc} x & \in I_k \\ a_{n_k} & \in I_k \end{array} \right\} \Rightarrow |a_{n_k} - x| \leq length(I_k) = \frac{2M}{2^k} \to 0$$

Infinitely series 1

Definition 0.1.3

• Infinite series:

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots$$

• *n*-th partial sum:

$$s_n = a_1 + a_2 + \dots + a_n$$

• if $\lim s_n = s$, then we say the series converges to s

Theorem 0.1.7 (Euler's famous example)

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \ converges$$

Proof:

$$s_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$
$$s_n < s_{n+1} \quad \forall n \in \mathbb{N}$$
$$s_n < 2$$
$$MCT \Rightarrow \lim s_n \text{ exists}$$

This because

$$\begin{split} s_n &= 1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 3} + \frac{1}{4 \cdot 4} + \dots + \frac{1}{n \cdot n} \\ &< 1 + 12 \cdot 1 + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3} + \dots + \frac{1}{n \cdot (n-1)} \\ &= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) \\ &= 1 + 1 - \frac{1}{n} \\ &< 2 \end{split}$$

Remark: since $s_n < 2$ for all *n* the order limit theorem implies

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \lim s_n \le 2$$

Euler proved in 1734 that in fact

$$\sum_{k=1}^\infty \frac{1}{k^2} = \frac{\pi^2}{6}$$

Theorem 0.1.8 (harmonic seires)

$$\sum_{k=1}^{\infty} \frac{1}{k} \quad diverges$$

The integral test for convergence

Theorem 0.1.9 assume that $f : [1, \infty] \to \mathbb{R}$ is

- (i). positive
- (ii). continuous
- (iii). monotonically decreasing

Let $a_k = f(k)$ then

$$\sum_{k=1}^{\infty} a_k \ \text{converges} \Leftrightarrow \int_1^{\infty} f(x) \, dx \, < \infty$$

The Cauchy Criterion

Definition 0.1.4 (Cauchy sequence) (a_n) is a Cauchy sequence if

 $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad s.t. \quad n,m \geq N \Rightarrow |a_n - a_m| < \epsilon$

Meaning: the terms get close to each other

Theorem 0.1.10 (a_n) convergent \Rightarrow (a_n) Cauchy

Proof: assume $a = \lim a_n$ For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow |a_n - a| < \frac{1}{2}\epsilon$$
$$m, n \ge N \quad \Rightarrow |a_n - a_m| = |(a_n - a) - (a_m - a)|$$
$$\leq |a_n - a| + |a_m - a|$$
$$< \epsilon$$

Lemma 0.1.1 (a_n) Cauchy \Rightarrow (a_n) bounded

Proof: for $\epsilon = 1$ there exists $N \in \mathbb{N}$ such that

$$n, m \ge N \quad \rightarrow |a_n - a_m| < 1$$

$$n \ge N \quad \Rightarrow |a_n - a_N| < 1$$

$$\Rightarrow ||a_n| - |a_N|| < 1$$

$$\Rightarrow |a_n| - |a_N| < 1$$

$$\Rightarrow |a_n| < 1 + |a_N|$$

For $M = max\{|a_1|, |a_2|, ..., |a_{N-1}|, 1 + |a_N|\}$ we have

 $|a_n| \le M$ for all $n \in \mathbb{N}$

Theorem 0.1.11 (Cauchy Criterion) (a_n) Cauchy \Rightarrow (a_n) convergent

Proof:

Lemma $\Rightarrow (a_n)$ is bounded For weistrass-bolzano $\Rightarrow (a_n)$ has a convergent subsequence $(a_{n_k}) a = \lim a_{n_k}$ For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t

$$n, m \ge N \quad \Rightarrow |a_n - a_m| < \frac{1}{2}\epsilon$$

Fix an index $n_k \ge N$ such that $|a_{n_k} - a| < \frac{1}{2}\epsilon$, then

$$n \ge N \quad \Rightarrow |a_n - a| = |a_n - a_{n_k} + a_{n_k} - a|$$
$$\le |a_n - a_{n_k}| + |a_{n_k} - a|$$
$$< \epsilon$$

Infinite Series Properties

Theorem 0.1.12 (Algebraic Limit Theorem for series) if $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$ then

(i). $\sum_{k=1}^{\infty} ca_k = cA \text{ for all } c \in \mathbb{R}$

(*ii*).
$$\sum_{k=1}^{\infty} (a_k + b_k) = A + B$$

Theorem 0.1.13 (Cauchy Criterion) the following statements are equivalent

- (i). $\sum_{k=1}^{\infty} a_k$ converges
- (ii). for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t.

$$n > m \ge N \Rightarrow |a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon$$

Proof: note that

$$|a_m - s_m| = |a_{m+1} + \dots + a_n|$$

Statement $1 \Leftrightarrow (s_n)$ converges $\Leftrightarrow (s_n)$ Cauchy \Leftrightarrow Statement 2

Theorem 0.1.14 $\sum_{k=1}^{\infty} a_k \text{ converges} \Rightarrow \lim a_k = 0$

 $|s_{\tau}|$

Proof: let $\epsilon > 0$ be arbitrary There exists $N \in \mathbb{N}$ such that

$$n > m \ge N \quad \Rightarrow |a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon$$
$$n = m + 1 \text{ and } m \ge N \quad \Rightarrow |a_{m+1}| < \epsilon$$

Warning: the converse is NOT true! Note: the previous theorem also gives a test for divergence

Theorem 0.1.15 (Comparison test) if $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$, then

(i). $\sum_{k=1}^{\infty} b_k$ converges $\Rightarrow \sum_{k=1}^{\infty} a_k$ converges

(ii). $\sum_{k=1}^{\infty} a_k \text{ diverges} \Rightarrow \sum_{k=1}^{\infty} b_k \text{ diverges}$

Proof:

$$|a_{m+1} + a_{m+2} + \dots + a_n| = a_{m+1} + a_{m+2} + \dots + a_n$$

$$\leq b_{m+1} + b_{m+2} + \dots + b_n$$

$$= |b_{m+1} + b_{m+2} + \dots + b_n|$$

Apply the Cauchy criterion for series.

Note: this theorem does not be true for all k, but its sufficient that is true for a k sufficiently large

Theorem 0.1.16 (Alternating series test) assume

- (i). $0 \leq a_{k+1} \leq a_k$ for all $k \in \mathbb{N}$
- (*ii*). $\lim a_k = 0$

then the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges

Proof: consider the partial sums

$$s_n = a_1 - a_2 + a_3 - \dots + (-1)^{n+1} a_n$$

the partial sums form nested intervals:

$$I_n = [s_{2n}, s_{2n-1}] \quad \Rightarrow I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$

NIP \Rightarrow there exists $s \in \mathbb{N}$ such that $s \in I_n$ for all $n \in \mathbb{N}$

Let $\epsilon > 0$ be arbitrary Choose $N \in \mathbb{N}$ such that $a_{2N} < \epsilon$, then

$$n \ge 2N \quad \Rightarrow s, s_n \in I_N = [s_{2N}, s_{2N-1}]$$
$$\Rightarrow |s - s_n| \le s_{2N-1} - s_{2N}$$
$$\Rightarrow |s - s_n| \le a_{2N}$$
$$\Rightarrow |s - s_n| < \epsilon$$

Theorem 0.1.17 (Absolute vs. conditional convergence) $\sum_{k=1}^{\infty} |a_k|$ converges $\Rightarrow \sum_{k=1}^{\infty} a_k$ converges

Proof: note that

$$0 \le a_k + |a_k| \le 2|a_k|$$
 for all $k \in \mathbb{N}$

Comparison Test $\Rightarrow \sum_{k=1}^{\infty} (a_k + |a_k|)$ converges Apply Algebraic Limit Theorem:

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k + |a_k|) - \sum_{k=1}^{\infty} |a_k| \quad \text{converges}$$

Definition 0.1.5 $\sum_{k=1}^{\infty} a_k$ is called

- (i). absolutely convergent if $\sum_{k=1}^{\infty} |a_k|$ converges
- (ii). conditionally convergent if it converges but $\sum_{k=1}^{\infty} |a_k|$ diverges

Definition 0.1.6 (geometric series) a geometric series is of the form

$$\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + \cdots$$
$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

If and only if |r| < 1

Definition 0.1.7 telescoping series are the form

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (b_k - b_{k+1})$$

Successive terms cancel each other:

$$s_n = a_1 + a_2 + a_3 + \dots + a_n$$

= $(b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \dots + (b_n - b_{n+1})$
= $b_1 - b_{n+1}$

The series converges $\Leftrightarrow (b_n)$ converges

Basic Topology of R

Interval

Definition 0.1.8 Closed interval (endpoints included):

 $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

Definition 0.1.9 Open interval (endpoints not included):

 $(a,b) = \{ x \in \mathbb{R} : a < x < b \}$

Definition 0.1.10 $O \subset \mathbb{R}$ is open if

 $\forall a \in O \quad \exists \epsilon > 0 \quad s.t. \quad V_{\epsilon}(a) \subset O$

Note: the empty set \emptyset is open by definition

Theorem 0.1.18

(i). Unions of arbitrary collections of open sets are open

(ii). Intersections of finite collections of open sets are open

 $Proof(i): \text{ let } O = \bigcup_{i \in I} O_i \text{ with each } O_i \text{ open}$ $x \in O \Rightarrow x \in O_i \text{ for some } i \in I$ There exists $\epsilon > 0$ such that $V_{\epsilon}(x) \subset O_i \subset O$

 $\begin{array}{l} \operatorname{Proof}(ii): \mbox{ let } O = O_1 \cap O_2 \cap \cdots \cap O_n \mbox{ with each } O_i \mbox{ open} \\ x \in O \Rightarrow x \in O_i \mbox{ for all } i = 1, ..., n \\ \mbox{ For all } i = 1, ..., n \mbox{ there exists } \epsilon_i > 0 \mbox{ such that } V_{\epsilon_i}(x) \subset O_i \mbox{ For } \epsilon = \min\{\epsilon_1, ..., \epsilon_n\} \\ \mbox{ we have } V_{\epsilon}(x) \subset O_i \mbox{ for all } i = 1, ..., n \end{array}$

Warning: the intersection of infinitely many open sets need not be open!

Definition 0.1.11 (limit point) x is a limit point of $A \subset \mathbb{R}$ if $\forall \epsilon > 0$ $V_{\epsilon}(x)$ intersects A in some point other than x

Note: Limit points of A may or may not belong to A

Theorem 0.1.19 The following statements are equivalent:

- (i). x is a limit point of A
- (ii). There exists a sequence a_n in A such that

 $a_n \neq x \quad \forall n \in \mathbb{N} \quad and \quad x = \lim a_n$

Proof (i,ii): let $n \in \mathbb{N}$ and set $\epsilon = 1/n$

There exists $a_n \in V_{\epsilon}(x) \cap A$ with $a_n \neq x$

Note that $|a_n - x| < \epsilon = \frac{1}{n}$ Proof (ii,i): for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |a_n - x| < \epsilon$$

In particular, $a_N \in V_{\epsilon}(x)$ By assumption $a_N \neq x$ and $a_N \in A$

Definition 0.1.12 (Closed set) A set is closed if it contains its limit points

Theorem 0.1.20 the following statements are equivalent

- (i). F is closed
- (ii). Every Cauchy sequence in F has its limit in F

Proof (i,ii): Let $(a_n) \subset F$ be Cauchy

 $x = \lim a_n$ exists; now consider two cases:

- $x \neq a_n$ for all $n \in \mathbb{N} \Rightarrow x$ is a limit point of $F \Rightarrow x \in F$
- $x = a_n$ for some $n \in \mathbb{N} \Rightarrow x \in F$ holds trivally

Proof(ii,i): let x be a limit point of F

 $x = \lim a_n$ with $a_n \in F$ and $a_n \neq x$ for all $n \in \mathbb{N}$

 (a_n) is convergent \Rightarrow (a_n) Cauchy $\Rightarrow x \in F$ by assumption

Definition 0.1.13 (Closure) the closure of A is defined as

 $\bar{A} = A \cup \{all \ limit \ points \ of \ A\}$

Theorem 0.1.21 \overline{A} is closed

Proof: show that x limit point of $\overline{A} \Leftrightarrow x$ limit point of A

 $\overline{A} = A \cup L$ with $L = \{$ limit points of $A\}$

x limit point of $\bar{A} \Rightarrow \forall \epsilon > 0 \quad \exists y \in V_{\epsilon}(x) \cap \bar{A} \quad y \neq x$ Note: either $y \in A$ or $y \in L$

(i). $y \in A \Rightarrow x$ is a limit point of A

(ii).
$$y \in L \Rightarrow \forall \delta > 0 \quad \exists z \in V_{\delta}(y) \cap A \quad z \neq y$$

Note: $V_{\delta}(y) \subset V_{\epsilon}(x) \setminus \{x\}$ for δ small enough

Therefore x is a limit point of A

Theorem 0.1.22 (complements)

- (i). O open $\Leftrightarrow O^c$ closed
- (ii). F closed $\Leftrightarrow F^c$ open

Warning: sets are not likes doors!

- (0,1] and \mathbb{Q} are neither open nor closed
- \mathbb{R} and \emptyset are both open and closed

Practical consequence: it is impossible to prove openness/ closedness by contradiction

Theorem 0.1.23 (unions and intersections)

- (i). Unions of finite collections of closed sets are closed
- (ii). Intersections of arbitrary collections of closed sets are closed

Proof(i):

$$F_1, ..., F_n \text{ closed} \Rightarrow F_1^c, ..., F_n^c \text{ open}$$

$$\Rightarrow F_1^c \cap \dots \cap F_n^c \text{ open}$$

$$\Rightarrow (F_1^c \cap \dots \cap F_n^c)^c \text{ closed}$$

$$\Rightarrow F_1 \cup \dots \cup F_n \text{ closed}$$

Proof (ii):

$$F_i \text{ closed for all } i \in I \Rightarrow F_i^c \text{ open for all } i \in I$$
$$\Rightarrow \bigcup_{i \in I} F_i^c \text{ open}$$
$$\Rightarrow (\bigcup_{i \in I} F_i^c)^c \text{ closed}$$
$$\Rightarrow \bigcup_{i \in I} F_i \text{ closed}$$

_

The last passage of both proof we have used De Morgan's laws, which state that for any collection of sets $\{E_i : i \in I\}$

$$\left(\bigcup_{i\in I} E_i\right)^c = \bigcap_{i\in I} E_i^c \quad \text{and} \quad \left(\bigcap_{i\in I} E_i\right)^c = \bigcup_{i\in I} E_i^c$$

Warning: the union of infinitely many closed sets need not be closed

Compact sets

Definition 0.1.14 (sequential definition) $K \subset \mathbb{R}$ is compact if every sequence in K has a convergent subq. with a limit in K

Theorem 0.1.24 $K \subset \mathbb{R}$ compact $\Leftrightarrow K$ closed and bounded

 $Proof(\Rightarrow)$: Assume K is not bounded. There exists $(x_n) \subset K$ with $|x_n| > n$ for all $n \in \mathbb{N}$.

 (x_n) has no convergent subsequence. Contradiction!

Let x be a limit point of K. There exists $(x_n) \subset K$ such that $x = \lim x_n$.

K compact \Rightarrow there exists a subsequence $(x_{n_k}) \rightarrow y \in K$. $(x_{n_k}) \rightarrow x$ as well $\Rightarrow x = y \in K$

 $Proof(\Leftarrow):$ let $(x_n) \subset K$. K is bounded $\Rightarrow (x_n)$ is bounded.

B-W Theorem $\Rightarrow (x_n)$ has a convergent subsequence. Let $x = \lim x_{n_k}$. Hence, K is closed $\Rightarrow x \in K$

Theorem 0.1.25 (Generalization of the NIP) assume that $K_n \neq \emptyset$ is compact for all $n \in \mathbb{N}$ and

$$K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$$

Then $\bigcap_{n=1}^{\infty} K_n$ is nonempty

Open covers

Definition 0.1.15 Let $A \subset \mathbb{R}$ and assume that the sets $O_i \subset \mathbb{R}$ where $i \in I$, are open. We call the sets O_i an open cover for A if

$$A \subset \bigcup_{i \in I} O_i$$

Theorem 0.1.26 K compact \Leftrightarrow any open cover for K has a finite subcover

 $Proof(\Rightarrow)$:

Let $O_i, i \in I$, be an open cover for K without finite subcover.

Take a bounded, closed interval $J_1 \supset K$

Halving process: construct J_n be closed intervals s.t.

- $J_1 \supset J_2 \supset J_3 \supset \cdots$
- $K \cap J_n$ can not be coverd by finitely many O_i 's

 $K \cap J_n$ compact for all $n \in \mathbb{N} \Rightarrow \bigcap_{n=1}^{\infty} (K \cap J_n) \neq \emptyset$.

There exists $x \in K$ such that $x \in J_n$ for all n

 $x \in O_i$ for some $i \in I$ and let $\epsilon > 0$ such that $V_{\epsilon}(x) \subset O_i$

There exists $N \in \mathbb{N}$ such that $\operatorname{length}(J_N) < \epsilon$

Hence, $K \cap J_N \subset J_N \subset V_{\epsilon}(x) \subset O_i$. Contradiction!

 $Proof(\Leftarrow)$:

 $O_n = (-n, n), n \in \mathbb{N}$, is an open cover for K.

 $K \subset O_1 \cup O_2 \cup \cdots \cup O_N = (-N, N)$ for some $N \in \mathbb{N}$. Therefore, K is bounded.

Let y be a limit point K

There exists $(y_n) \subset K$ with $y = \lim y_n$. Assume $y \notin K$

Let $x \in K$ and $O_x = V_{\epsilon}(x)$ with $\epsilon = \frac{1}{2}|x-y|$

The sets, O_x , where $x \in K$, form an open cover for K

There exist $x_1, ..., x_n \in K$ such that $K \subset O_{x_1} \cup \cdots \cup O_{x_n}$

Pick $N \in \mathbb{N}$ such that $|y_N - y| < \min\{\frac{1}{2}|x_i - y| : i = 1, ..., n\}$

Hence, $y_N \notin O_{x_1} \cup \cdots \cup O_{x_n}$ Contradiction!

Theorem 0.1.27 (Heine-Borel) Let $K \subset \mathbb{R}$, the following statements are equivalent:

- (i). K is compact
- (ii). K is closed and bounded
- (iii). Any open cover for K has a finite sets.

Functional Limits and Continuity

Definition 0.1.16 Let $f : A \to \mathbb{R}$ and c a limit point of A. We say that $\lim_{x\to c} f(x) = L$ when

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t \left\{ \begin{array}{c} 0 < |x - c| < \delta \\ x \in A \end{array} \right\} \Rightarrow |f(x) - L| < \epsilon$$

Note: f need not be defined at c

Theorem 0.1.28 (Sequential characterization) Let $f : A \to \mathbb{R}$ and c a limit point of A.

The following statements are equivalent

- (i). $\lim_{x \to c} f(x) = L$
- (*ii*). $\lim f(x_n) = L$ for all $(x_n) \subset A$ with $x_n \neq c$ and $\lim x_n = c$

Corollary 0.1.17 consider $f : A \to \mathbb{R}$ and let c be a limit point of A. $\lim_{x\to c} f(x)$ does not exist if there exist $x_n, y_n \subset A$ s.t.

- $x_n \neq c$ and $y_n \neq c$
- $\lim x_n = \lim y_n = c$
- $\lim f(x_n) \neq \lim f(y_n)$

Theorem 0.1.29 (Algebraic properties) Let $f : A \to \mathbb{R}$, c a limit point of A, and

$$\lim_{x \to c} f(x) = L \quad and \quad \lim_{x \to c} g(x) = M$$

Then

- (i). $\lim_{x\to c} kf(x) = kl \ k \in \mathbb{R}$
- (*ii*). $\lim_{x \to c} [f(x) + g(x)] = L + M$
- (*iii*). $\lim_{x\to c} [f(x)g(x)] = LM$
- (iv). $\lim_{x\to c} [f(x)/g(x)] = L/M$ provided $M \neq 0$

Definition 0.1.18 $f: A \to \mathbb{R}$ is continuous at $c \in A$ if

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t \left\{ \begin{array}{c} |x - c| < \delta \\ x \in A \end{array} \right\} \Rightarrow |f(x) - f(c)| < \epsilon$$

Notes: f(c) needs to be defined, but c need not be a limit point of A. Moreover, δ may depend on both ϵ and c

Example: if $c \in A$ is isolated then $f : A \to \mathbb{R}$ is continuous at c.

Let $\epsilon > 0$ be arbitrary

Take $\delta > 0$ such that $V_{\delta}(c) \cap A = \{c\}$, then

$$\begin{aligned} |x - c| < \delta & \text{and } x \in A \Rightarrow x \in V_{\delta}(c) \cap A \\ \Rightarrow x = c \\ \Rightarrow f(x) = f(c) \\ \Rightarrow |f(x) - f(c)| = 0 < \epsilon \end{aligned}$$

Theorem 0.1.30 *let* $f : A \to \mathbb{R}$ *and* $c \in A$ *. the following statements are equivalent:*

- (i). f is continuous at c
- (ii). $(x_n) \subset A \text{ and } \lim x_n = c \Rightarrow \lim f(x_n) = f(c)$

If c is a limit point of A then (i) and (ii) are also equivalent with

(*iii*). $\lim_{x \to c} f(x) = f(c)$

Corollary 0.1.19 *let* $f : A \to \mathbb{R}$ *and* $c \in A$ *a limit point,* f *is not continuous at* x = c *if there exists* $(x_n) \subset A$ *s.t*

- $x \neq c$
- $\lim x_n = c$
- $\lim f(x_n) \neq f(c)$

Continuity and compactness

Theorem 0.1.31 $f: A \to \mathbb{R}$ cont. and $K \subset A$ compact $\Rightarrow f(K)$ compact

Proof: Let $(y_n) \subset f(K)$ be arbitrary

There exists $(x_n) \subset K$ such that $y_n = f(x_n)$ for all n

K compact \Rightarrow some subsequence $x_{n_k} \to x \in K$

f continuous $\Rightarrow y_{n_k} = f(x_{n_k}) \to f(x) \in f(K)$

Warning: the previous theorem is false for pre-image:

$$f^{-1}(K) = \{x \in A : f(x) \in K\}$$

Theorem 0.1.32 (Maxima and Minima) Let $K \subset \mathbb{R}$ be compact and $f : K \to \mathbb{R}$ continuous, then f attains a maximum and a minimum on K

Proof (max): f(K) is compact

s = supf(K) exists and $s \in f(K)$

s = f(c) for some $c \in K$

s is an upper bound for $f(K) \Rightarrow f(x) \leq s$ for all $x \in K$

Warning: without compactness the previous theorem is false!

Uniform continuity

Theorem 0.1.33 $f: A \to \mathbb{R}$ is uniformly continuous on A if

 $\forall \epsilon > 0 \quad \exists \delta > 0 \quad such \ that \ \forall x, y \in A \quad |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$

Note: uniform means that δ does not depend on x or y

Logical negation: $\exists \epsilon_0 > 0$ such that $\forall \delta > 0 \ \exists x, y \in A$ for which

 $|x-y| < \delta$ but $|f(x) - f(y)| \ge \epsilon_0$

Theorem 0.1.34 the following statements are equivalent

- (i). $f: A \to \mathbb{R}$ is not uniformly continuous on A
- (ii). There exists $\epsilon_0 > 0$ and $(x_n), (y_n) \subset A$ such that

$$|x_n - y_n| \to 0$$
 but $|f(x_n) - f(y_n)| \ge \epsilon_0$ for all n

Theorem 0.1.35 if $f : K \to \mathbb{R}$ is continuous and K is compact then f is uniformly continuous on K

Proof: let $\epsilon > 0$ be arbitrary

For all $c \in K$ there exists $\delta_c > 0$ such that

 $|x-c| < 2\delta_c \implies |f(x) - f(c)| < \frac{1}{2}\epsilon$ for cosmetic purposes

 $O_c = (c - \delta_c, c + \delta_c)$, with $c \in K$, form an open cover for K

 $K \subset O_{c_1} \cup \cdots \cup O_{c_n}$ for some $c_1, ..., c_n \in K$

Take $x, y \in K$ with $|x - y| < \delta = \min\{\delta_{c_1}, ..., \delta_{c_n}\}$

(1)

$$\begin{aligned} |x-c_i| &< \delta_{c_i} \quad \text{ for some } i=1,...,n \\ |f(x)-f(y)| &< \frac{1}{2}\epsilon \end{aligned}$$

(2)

$$|c_i - y| \le |c_i - x| + |x - y| < \delta_{c_i} + \delta \le 2\delta_{c_i}$$
$$f(c_i) - f(y)| < \frac{1}{2}\epsilon$$

Apply triangle inequality with the (1) and (2) we have proved that the theorem holds.

Intermediate value theorem

Theorem 0.1.36 if $f : [a, b] \to \mathbb{R}$ is continuous and

$$f(a) < L < f(b) \quad or \quad f(a) > L > f(b)$$

then f(c) = L for some $c \in (a, b)$

Proof: without loss of generality we can assume

- L = 0, otherwise replace f(x) by f(x) L
- f(a) < 0 < f(b), otherwise replace f(x) by -f(x)

the bisection method gives nested intervals I_n :

At the left endpoint of each I_n we have f < 0

At the right endpoint of each I_n we have $f \ge 0$

there exist intervals $I_n = [a_n, b_n]$ such that

- $f(a_n) < 0$ and $f(b_n) \ge 0$
- $I_0 \supset I_1 \supset I_2 \supset \cdots$
- $length(I_n) = (b-a)/2^n$

NIP $\Rightarrow \exists c \in [a, b]$ such that $c \in I_n = [a_n, b_n] \forall$

Derivatives

Definition 0.1.20 Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$, f is called differentiable at $c \in I$ if

$$f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \ exists$$

Theorem 0.1.37 $f: I \to \mathbb{R}$ differentiable at $c \in I \Rightarrow f$ continuous at c

Proof:

$$\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} (x - c)$$
$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} [x - c]$$
$$= f'(c) \cdot 0$$
$$= 0$$

Theorem 0.1.38 (Interior extremum theorem) assume

- $f:(a,b) \to \mathbb{R}$ is differentiable
- f attains a maximum or minimum at $c \in (a, b)$

then f'(c) = 0

Proof (maximum):
$$f(c) \ge f(x)$$
 for all $x \in (a, b)$

Take sequences (x_n) and (y_n) in (a, b) such that

$$x_n < c < y_n \quad \forall n \in \mathbb{N} \quad \text{and} \quad \lim x_n = \lim y_n = c$$

f'(c) = 0 by the order limit theorem:

$$f'(c) = \lim \frac{f(x_n) - f(c)}{x_n - c} \ge 0$$

$$f'(c) = \lim \frac{f(y_n) - f(c)}{y_n - c} \le 0$$

Warning: for closed intervals the previous theorem may be false!

Theorem 0.1.39 (Darboux's theorem) if $f : [a,b] \rightarrow \mathbb{R}$ is differentiable and

$$f'(a) < L < f'(b)$$
 or $f'(a) > L > f'(b)$

then there exist $c \in (a, b)$ with f'(c) = L

Note:

- proof \neq intermediate value theorem applied to f'
- we do not assume f' to be continuous

Proof: restrict to the case f'(a) < 0 < f'(b), Otherwise replace f(x) by $\pm (f(x) - Lx)$.

claim: $\exists s \in (a, b)$ s.t. f(s) < f(a)

Otherwise $f(x) \ge f(a) \ \forall x \in (a, b)$ so that

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \ge 0$$
 Contradiction!

/faculty of Science and Engineering

29

Similarly: $\exists t \in (a, b)$ such that f(t) < f(b)

[a, b] compact and f continuous \Rightarrow f attains a minimum on [a, b]

f(s) < f(a) and $f(t) < f(b) \Rightarrow f$ attains a minimum in (a, b)

Interior extremum theorem $\Rightarrow f$

Mean value theorem

Theorem 0.1.40 (Rolle's theorem) assume that

- $f:[a,b] \to \mathbb{R}$ is continuous and differentiable on (a,b)
- f(a) = f(b)

then there exists $c \in (a, b)$ such that f'(c) = 0

Proof: f cont. and [a, b] cpt. \Rightarrow f attains max/min values

$$f(a) = f(b)$$
 both max and min $\Rightarrow f$ is constant
 $\Rightarrow f'(x) = 0$ for all x
 \Rightarrow take any $c \in (a, b)$

Otherwise, a max or min is attained at $c \in (a, b)$

Then f'(c) = 0 by interior extremum theorem

Theorem 0.1.41 (Mean value theorem) if

- $f:[a,b] \to \mathbb{R}$ is continuous
- f is differentiable on (a, b)

Then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof: apply Rolle's theorem to

$$h(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$$

then

$$k(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$

$$h(x) = f(x) - k(x) \quad \text{is continuous on } [a, b] \text{ and differentiable on } (a, b)$$

$$h(a) = h(b) = 0$$

By Rolle's theorem: $\exists c \in (a, b)$ s.t.

h

/faculty of Science and Engineering

30

Sequence and Series of Functions

Pointwise convergence

Definition 0.1.21 converges pointwise consider $f_n : A \to \mathbb{R}$

 (f_n) converges pointwise to $f: A \to \mathbb{R}$ if for all fixed $x \in A$

$$\lim f_n(x) = f(x)$$

Thus: for each fixed $x \in A$ we have

$$\forall \epsilon > 0 \quad \exists N_{\epsilon,x} \in \mathbb{N} \quad \text{s.t} \quad n \ge N_{\epsilon,x} \Rightarrow \quad |f_n(x) - f(x)| < \epsilon$$

Uniform convergence

Definition 0.1.22 Uniform convergence (f_n) converges uniformly to $f : A \to \mathbb{R}$ if

 $\forall \epsilon > 0 \quad \exists N_{\epsilon} \in \mathbb{N} \quad s.t \quad n \ge N_{\epsilon} \Rightarrow \quad |f_n(x) - f(x)| < \epsilon \quad \forall x \in A$

Note: uniform means that N_{ϵ} is independent of $x \in A$

Theorem 0.1.42 consider $f_n : A \to \mathbb{R}$ then

$$f_n \to f \ uniformly \quad \Leftrightarrow \quad \lim \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = 0$$

 $Proof(\Rightarrow)$: for $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$n \ge N_{\epsilon} \quad \Rightarrow \quad |f_n(x) - f(x)| < \epsilon \quad \forall x \in A$$
$$\Rightarrow \quad \sup_{x \in A} |f_n(x) - f(x)| \le \epsilon$$

 $Proof(\Leftarrow)$: for $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$n \ge N_{\epsilon} \quad \Rightarrow \quad \sup_{x \in A} |f_n(x) - f(x)| < \epsilon$$
$$\Rightarrow \quad |f_n(x) - f(x)| < \epsilon \quad \forall x \in A$$

Theorem 0.1.43 *Preservation of continuity* assume $f_n : A \to \mathbb{R}$ satisfies

(i). $f_n \to f$ uniformly on A

(ii). f_n is continuous at $c \in A$ for all $n \in \mathbb{N}$

Then f is continuous at c

Moral: uniform convergence preserves continuity

Proof: for $\epsilon > 0$ there exist

• $N \in \mathbb{N}$ s.t. $|f_N(x) - f(x)| < \frac{1}{3}\epsilon$ for all $x \in A$ • $\delta > 0$ s.t $|x - c| < \delta \Rightarrow |f_N(x) - f_N(c)| < \frac{1}{3}\epsilon$ if $|x - c| < \delta$ then $|f(x) - f(c)| = |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) - f(c)|$ $\leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)|$ $< \frac{1}{3}\epsilon + \frac{1}{3}\epsilon + \frac{1}{3}\epsilon$

Theorem 0.1.44 Term-by-term Continuity Theorem Let f_n be continuous functions defined on a set $A \subseteq \mathbb{R}$, and assume $\sum_{n=1}^{\infty} f_n$ converges uniformly on A to a function f. Then, f is continuous on A

Theorem 0.1.45 Term-by-term Differentiability Let f_n be differentiable functions defined on an interval A, and assume $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly to a limit g(x) on A. If there exists a point $x_0 \in [a,b]$ where $\sum_{n=1}^{\infty} f_n(x_0)$ converges, then the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly to a differentiable function f(x) satisfying f'(x) = g(x) on A. In other words,

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 and $\sum_{n=1}^{\infty} f'_n(x)$

Theorem 0.1.46 Weierstrass M-test For each $n \in \mathbb{N}$, let f_n be a function defined on a set $A \subseteq \mathbb{R}$, and let $M_n > 0$ be a real number satisfying

$$|f_n(x)| \le M_n$$

For all $x \in A$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly on A

Power Series

General form of PS:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

Theorem 0.1.47

$$\sum_{n=0}^{\infty} a_n x^n \text{ converges at } c \neq 0 \quad \Rightarrow \quad \sum_{n=0}^{\infty} |a_n x^n| \text{ converges for } |x| < |c|$$

Proof:

$$\sum_{n=0}^{\infty} a_n c^n \text{ converges} \quad \Rightarrow \quad \lim a_n c^n = 0$$
$$\Rightarrow (a_n c^n) \text{ is bounded}$$

$$\Rightarrow \quad \exists M > 0 \text{ s.t } |a_n c^n| \le M \ \forall n \in \mathbb{N}$$

thus,

$$|a_n x^n| = |a_n \left(c \cdot \frac{x}{c} \right)^n| = |a_n c^n| \cdot \left| \frac{x}{c} \right|^n \le M \cdot \left| \frac{x}{c} \right|^n \qquad \forall n \in \mathbb{N}$$

Note: $|x| < |c| \Rightarrow \left|\frac{x}{c}\right| < 1$

Apply comparison test

$$\sum_{n=0}^{\infty} M \left| \frac{x}{c} \right|^n \quad \text{converges} \quad \Rightarrow \sum_{n=0}^{\infty} |a_n x^n| \quad \text{converges}$$

Corollary 0.1.23 Radius of convergence There exists $R \ge 0$ such that

- $|x| < R \Rightarrow PS$ converges at x
- $|x| > R \Rightarrow PS$ diverges at x

R is called the radius of convergence

Methods for **computing** R from the a_n 's

Root test: if $L = \lim \sqrt[n]{|a_n|}$ exists, then R = 1/L

Ratio test: if $L = \lim \left| \frac{a_{n+1}}{a_n} \right|$ exists, then R = 1/L

If L = 0 then $R = \infty$, that is converges on entire real line.

Proof Root Test: $\lim \sqrt[n]{|a_n x^n|} = L|x| \quad \forall x \in \mathbb{R}$ fixed

For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t.

$$\begin{split} n \ge N \quad \Rightarrow \quad \left| \sqrt[n]{|a_n x^n|} - L|x| \right| < \epsilon \\ \Rightarrow \quad L|x| - \epsilon < \sqrt[n]{|a_n x^n|} < L|x| + \epsilon \\ \Rightarrow \quad (L|x| - \epsilon)^n < |a_n x^n| < (L|x| + \epsilon)^n \end{split}$$

thus if |x| < 1/L, then pick $\epsilon < 1 - L|x|$

Apply comparison test:

$$\begin{split} L|x| + \epsilon < 1 \quad \Rightarrow \quad \sum_{n=0}^{\infty} (L|x| + \epsilon)^n \text{ converges} \\ \Rightarrow \quad \sum_{n=0}^{\infty} |a_n x^n| \text{ converges} \\ \Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \text{ converges} \end{split}$$

instead, if |x| > 1/L then pick $\epsilon < L|x| - 1$

$$\begin{array}{lll} L|x|-\epsilon > 1 & \Rightarrow & (L|x|-\epsilon)^n \text{ unbounded} \\ & \Rightarrow & |a_n x^n| \text{ unbounded} \\ & \Rightarrow & \displaystyle\sum_{n=0}^{\infty} a_n x^n \text{ diverges} \end{array}$$

So far we have discuss only pointwise converge of a power series. Hence, now we will look at uniform convergence

Theorem 0.1.48 Uniform convergence

$$\sum_{n=0}^{\infty} |a_n c^n| \text{ converges } \Rightarrow \sum_{n=0}^{\infty} a_n x^n \text{ uniformly conv. on } [-|c|, |c|]$$

Proof: for $|x| \leq |c|$ we have

$$|a_n x^n| = |a| \cdot |x|^n \le |a_n| \cdot |c|^n = |a_n c^n| =: M_n$$

Apply Weierstrass'test:

$$\sum_{n=0}^{\infty} M_n \quad \text{conv.} \quad \Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \quad \text{unif. conv. on } [-|c|, |c|]$$

Corollary 0.1.24 Continuity of the limit $\sum_{n=0}^{\infty} a_n x^n$ is continuous function on (-R, R)

Proof: take $x_0 \in (-R, R)$ and $|x_0| < c < d < R$, then

PS convergent at $d \Rightarrow$ PS absolutely convergent at c \Rightarrow PS uniformly convergent on [-c, c] \Rightarrow PS continuous on [-c, c] each $a_n x^n$ is continuous \Rightarrow PS continuous at x_0

Corollary 0.1.25

$$\sum_{n=0}^{\infty} |a_n R^n| \text{ convergent} \quad \Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \text{ uniformly conv. on } [-R, R]$$

In particular, the PS is continuous on [-R, R]

What if convergence is conditional at x = R or x = -R?

Lemma 0.1.2 Summation by parts if $s_n = u_1 + \cdots + u_n$, then

$$\sum_{k=1}^{n} u_k v_k = s_n v_{n+1} + \sum_{k=1}^{n} s_k (v_k - v_{k+1})$$

Proof: set $s_0 = 0$, then

$$u_k v_k = (s_k - s_{k-1}) v_k$$

= $s_k (v_k - v_{k+1}) + s_k v_{k+1} - s_{k-1} v_k \quad \forall k = 1, ..., n$

Lemma 0.1.3 Abel's lemma assume that (u_n) and (v_n) satisfy

- $|u_1 + \dots + u_n| \le C \ \forall n \in \mathbb{N}$
- $0 \le v_{n+1} \le v_n \ \forall n \in \mathbb{N}$

Then

$$\left|\sum_{k=1}^{n} u_k v_k\right| \le C v_1$$

Proof: if $s_n = u_1 + \cdots + u_n$, then

$$\begin{vmatrix} \sum_{k=1}^{n} u_k v_k \end{vmatrix} = \begin{vmatrix} s_n v_{n+1} + \sum_{k=1}^{n} s_k (v_k - v_{k+1}) \end{vmatrix} \\ \leq |s_n| v_{n+1} + \sum_{k=1}^{n} |s_k| (v_k - v_{k+1}) \\ \leq C \left(v_{n+1} + \sum_{k=1}^{n} (v_k - v_{k+1}) \right) \\ = C v_1 \end{aligned}$$

Theorem 0.1.49 Abel's theorem

(i). PS converges at $x = R \Rightarrow PS$ conv. uniformly on [0, R](ii). PS converges at $x = -R \Rightarrow PS$ conv. uniformly on [-R, 0]Proof(1): for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t

$$n > m \ge N \quad \Rightarrow \quad \left| \sum_{k=m+1}^n a_k R^k \right| < \epsilon$$

Take any $x \in [0, R]$ and set

$$v_k = \left(\frac{x}{R}\right)^k, \qquad u_k = \begin{cases} a_k R^k & \text{if } k \ge m+1\\ 0 & \text{Otherwise} \end{cases}$$

From Abel's lemma we get the Cauchy criterion:

$$\left|\sum_{k=m+1}^{n} a_k x^k\right| = \left|\sum_{k=1}^{n} u_k v_k\right| < \epsilon \cdot \frac{x}{R} \le \epsilon \qquad \forall x \in [0, R]$$

Theorem 0.1.50 Term-wise Differentiability Theorem

$$\sum_{n=0}^{\infty} a_n x^n \text{ conv. on } (-R,R) \quad \Rightarrow \quad \sum_{n=0}^{\infty} n a_n x^{n-1} \text{ conv. on } (-R,R)$$

Proof: if |c| < 1, then there exists M > 0 s.t

$$|nc^{c-1}| \le M \quad \forall n \in \mathbb{N}$$

Let |x| < t < R, then

$$|na_n x^{n-1}| = \frac{1}{t} \left(n \left| \frac{x}{t} \right|^{n-1} \right) |a_n t^n| \le \frac{M}{t} |a_n t^n|$$

Apply comparison test

Theorem 0.1.51 For any PS with radius R we have

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} n a_n x^{n-1} \quad \forall x \in (-R, R)$$

Proof: let $0 \le c < R$, then

- $\sum_{n=0}^{\infty} na_n x^{n-1}$ converges uniformly on [-c, c]
- $\sum_{n=0}^{\infty} a_n x^n$ converges at x = 0

Now apply Term-wise Differentiability Theorem

Taylor Series

Assume f is inf. often differentiable on interval around x = 0

Definition 0.1.26 The Taylor series of f around x = 0 is given by

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Definition 0.1.27

$$s_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k \qquad \text{partial sum}$$
$$E_n(x) = f(x) - s_n(x) \qquad \text{remainder}$$

Lemma 0.1.4 assume that

- x > 0 and h(t) is n + 1 times diff.ble on [0, x]
- h(x) = 0 and $h^{(k)}(0) = 0$ for all k = 0, ..., n

Then $h^{(n+1)}(c) = 0$ for some $c \in (0, x)$

Proof: repeated application of Rolles's theorem gives

$$\begin{aligned} h(0) &= h(x) \implies h'(c_1) = 0 \text{ for some } c_1 \in (0, x) \\ h'(0) &= h'(c_1) \implies h''(c_2) = 0 \text{ for some } c_2 \in (0, c_1) \\ \vdots \\ h^{(n)}(0) &= h^{(n)}(c_n) \implies h^{(n+1)}(c_{n+1}) = 0 \text{ for some } c_{n+1} \in (0, c_n) \end{aligned}$$

Theorem 0.1.52 Lagrange remainder For $n \in \mathbb{N}$ and x > 0 there exists $c \in (0, x)$ such that

$$E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

if x < 0, then $c \in (x, 0)$

Note: c depends on both n and x

Proof: fix x > 0 and consider

$$h(t) = f(t) - s_n(t) - \left(\frac{f(x) - s_n(x)}{x^{n+1}}\right) t^{n+1}$$

Note that:

$$h(x) = 0$$
 and $h^{(k)}(0) = 0, k = 0, ..., n$

The lemma gives $c \in (0, x)$ such that

$$f^{(n+1)}(c) - s_n^{(n+1)}(c) - (n+1)! \left(\frac{f(x) - s_n(x)}{x^{n+1}}\right) = 0$$

Rearraging gives

$$f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

Taylor series around different points

Assume f is inf. often diff.ble on interval around a

Definition 0.1.28 The Taylor series of f around x = a is given by

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Theorem 0.1.53 For x > a there exists $c \in (a, x)$ such that

$$E_n(x) = f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

if x < a then $c \in (x, a)$

The Riemann Integral

The Fundamental Theorem of Calculus is a statement about the inverse relationship between differentiation and integration. It comes in two parts, depending on whether we are differentiating an integral or integrating a derivative. The Fundamental Theorem of Calculus states that:

• $\int_a^b F'(x) dx = F(b) - F(a)$ and

• if
$$G(x) = \int_{a}^{x} f(t)dt$$
 then $G'(x) = f(x)$

Nevertheless, for understand it completely we need first to define Partition, Upper Sums, and Lower Sums:

Definition 0.1.29 *Partitions* A partitions of [a, b] is a set of the form

$$P = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$$

Let $f:[a,b] \to \mathbb{R}$ be bounded and P be a partition of [a,b]

Definition 0.1.30 Lower sum Lower sum of f w.r.t P

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$
$$L(f, P) = \sum_{k=1}^n m_k (x_k - x_{k-1})$$

Let $f : [a, b] \to \mathbb{R}$ be bounded and P be a partition of [a, b]

Definition 0.1.31 Upper sum Upper sum of f w.r.t P

$$M_{k} = \sup\{f(x) : x \in [x_{k-1}, x_{k}]\}$$
$$U(f, P) = \sum_{k=1}^{n} M_{k}(x_{k} - x_{k-1})$$

Note: For a particular partition P, it is clear that $U(f, P) \ge L(f, P)$

Definition 0.1.32 Refinements Q is called a refinement of P if $P \subset Q$. Provided that P and Q are partitions of the same interval.

Lemma 0.1.5 If $P \subset Q$ then

 $L(f, P) \le L(f, Q)$ and $U(f, P) \ge U(f, Q)$

Corollary 0.1.33 If $P \subset Q$ then

$$U(f,Q) - L(f,Q) \le U(f,P) - L(f,P)$$

Proof (lower sum) Lemma 4.3.4: refine P by adding one point $z \in [x_{k-1}, x_k]$

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\} m'_k = \inf\{f(x) : x \in [z, x_k]\} m''_k = \inf\{f(x) : x \in [x_{k-1}, z]\}$$

Remember that $A \subset B$ then $\inf A \ge \inf B$

$$m_k(x_k - x_{k-1}) = m_k(x_k - z) + m_k(z - x_{k-1})$$

$$\leq m'_k(x_k - z) + m''_k(z - x_{k-1})$$

Then proceed by induction

Lemma 0.1.6 for two partitions P_1 and P_2 we have $L(f, P_1) \leq U(f, P_2)$ Proof: let $Q = P_1 \cup P_2$ then $P_1, P_2 \subset Q$ so

$$L(f, P_1) \le L(f, Q) \le U(f, Q) \le U(f, P_2)$$

Integrability

Assume $f : [a, b] \to \mathbb{R}$ is bounded

Let \mathcal{P} denote the collection of all partitions of [a, b]

Definition 0.1.34 The upper integral of f is defined to be

$$U(f) = \inf\{U(f, P) : P \in \mathcal{P}\}\$$

The lower integral of f by

$$L(f) = \sup\{L(f, P) : P \in \mathcal{P}\}\$$

Lemma 0.1.7 For any bounded function f on [a, b], it is always the case that $U(f) \ge L(f)$

Definition 0.1.35 A bounded function $f : [a, b] \to \mathbb{R}$ is called **Rimann inte**grable if U(f) = L(f)

Notation:

$$\int_{a}^{b} f = U(f) = L(f) \quad \text{or} \quad \int_{a}^{b} f(x)dx = U(f) = L(f)$$

Theorem 0.1.54 Criterion of integrability The following statements are equivalent

- (i). f is integrable
- (ii). for all $\epsilon > 0$ there exists a partition P_{ϵ} such that

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$$

Proof $(2 \Rightarrow 1)$:

$$\begin{cases} U(f) \le U(f, P_{\epsilon}) \\ L(f) \ge L(f, P_{\epsilon}) \end{cases} \Rightarrow U(f) - L(f) \le U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon \end{cases}$$

This holds for all $\epsilon > 0$ so U(f) = L(f)

Proof $(1 \Rightarrow 2)$: let $\epsilon > 0$ and choose P_1 and P_2 such that

$$L(f, P_1) > L(f) - \frac{1}{2}\epsilon$$
 and $U(f, P_2) < U(f) + \frac{1}{2}\epsilon$

Let $P_{\epsilon} = P_1 \cup P_2$ then

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) \leq U(f, P_2) - L(f, P_1)$$

= $[U(f, P_2) - U(f)] + [L(f) - L(f, P_1)]$
 $< \frac{1}{2}\epsilon + \frac{1}{2}\epsilon$
= ϵ

Theorem 0.1.55 f continuous on $[a,b] \Rightarrow f$ is integrable on [a,b]Proof: f is uniformly continuous on [a,b]

For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$|x-y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \frac{\epsilon}{b-a} \quad \text{for all } x, y \in [a,b]$$

Let P be a partition such that $x_k - x_{k-1} < \delta$ for all k = 1, 2, ..., n

There exist $y_k, z_k \in [x_{k-1}, x_k]$ such that

$$f(y_k) = M_k$$
 and $f(z_k) = m_k$

Note:

$$|y_k - z_k| < \delta \quad \Rightarrow \quad M_k - m_k = f(y_k) - f(z_k) < \frac{\epsilon}{b-a}$$

Thus

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})$$
$$= \frac{\epsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1})$$
$$= \frac{\epsilon}{b-a} \cdot (x_n - x_0)$$
$$= \frac{\epsilon}{b-a} \cdot (b-a) = \epsilon$$

Example: any increasing function $f:[a,b] \to \mathbb{R}$ is integrable

For any partition of [a, b] we have

$$M_{k} = \sup\{f(x) : x \in [x_{k-1}, x_{k}\}$$
$$= f(x_{k})$$
$$m_{k} = \inf\{f(x) : x \in [x_{k-1}, x_{k}\}$$

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k] \\ = f(x_{k-1})$$

An equispaced partition P gives

$$U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})$$

= $\frac{(b-a)}{n} \sum_{k=1}^{n} [f(x_k) - f(x_{k-1}]]$
= $\frac{(b-a)(f(b) - f(a))}{n} \to 0$ as $n \to \infty$

Properties of integrals

Theorem 0.1.56 Split property Let $f : [a, b] \to \mathbb{R}$ be bounded and $c \in (a, b)$, then

f integrable on $[a, b] \Leftrightarrow f$ integrable on [a, c] and [c, b]

In that case

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

/faculty of Science and Engineering

41

Proof (\Rightarrow) : Let $\epsilon > 0$ and pick a partition P of [a, b] s.t.

$$U(f,P) - L(f,P) < \epsilon$$

Let $P_c = P \cup \{c\}$ then

$$U(f, P_c) - L(f, P_c) < \epsilon$$

Then $Q = P_c \cap [a, c]$ is a partition of [a, c] and

$$\begin{array}{lll} m & := & \# \ intervals \ in \ Q \\ n & := & \# \ intervals \ in \ P_c \end{array} \} \Rightarrow m < n \\ \end{array}$$

m < n implies

$$U(f,Q) - L(f,Q) = \sum_{k=1}^{m} (M_k - m_k)(x_k - x_{k-1})$$

$$\leq \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})$$

$$= U(f, P_c) - L(f, P_c)$$

$$< \epsilon$$

Conclusion: f is integrable on [a, c]. The proof for [c, b] is similar. Proof (\Leftarrow) : Let P_1 and P_2 be partitions of [a, c] and [c, b] s.t

$$U(f, P_i) - L(f, P_i) < \frac{1}{2}\epsilon, \quad i = 1, 2$$

Then $P = P_1 \cup P_2$ is a partition of [a, b] and

$$U(f,P) = U(f,P_1) + U(f,P_2)$$
$$L(f,P) = L(f,P_1) + L(f,P_2)$$
$$U(f,P) - L(f,P) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$$

Conclusion: f is integrable on [a, b]

Let ϵ and P_1 and P_2 be as before

$$\int_{a}^{b} f \leq U(f, P)$$

$$< L(f, P) + \epsilon$$

$$= L(f, P_{1}) + L(f, P_{2}) + \epsilon$$

$$\leq \int_{a}^{c} f + \int_{c}^{b} f + \epsilon$$

$$\int_{a}^{b} f \leq \int_{a}^{c} f + \int_{c}^{b} f$$

/faculty of Science and Engineering

42

Let ϵ and P_1 and P_2 be as before

$$\int_{a}^{c} f + \int_{c}^{b} f \leq U(f, P_{1}) + U(f, P_{2})$$

$$< L(f, P_{1}) + L(f, P_{2}) + \epsilon$$

$$= L(f, P) + \epsilon$$

$$\leq \int_{a}^{b} f + \epsilon$$

$$\int_{a}^{c} f + \int_{c}^{b} f \leq \int_{a}^{b} f$$

And we have done.

Definition 0.1.36 if f is integrable on [a.b] then

$$\int_{a}^{b} f = -\int_{b}^{a} f$$
 and $\int_{c}^{c} f = 0$ for all $c \in \mathbb{R}$

Theorem 0.1.57 if f, g are integrable on [a, b] then

- f + g integrable and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$
- kf integrable and $\int_a^b kf = k \int_a^b f$ for all $k \in \mathbb{R}$

Theorem 0.1.58 If f is integrable on [a, b] then

$$m \le f(x) \le M \Rightarrow m(b-a) \le \int_a^b f \le M(b-a)$$

Proof: for all partitions P of [a, b]

$$L(f,P) \le \int_{a}^{b} f \le U(f,P)$$

Taking $P = \{a, b\}$ gives

$$U(f, P) = (b - a) \cdot \sup\{f(x) : x \in [a, b]\} \le M(b - a)$$

$$L(f, P) = (b - a) \cdot \inf\{f(x) : x \in [a, b]\} \ge m(b - a)$$

Theorem 0.1.59 if f, g are integrable on [a, b] then

$$f(x) \leq g(x) \quad \text{ for all } x \in [a,b] \Rightarrow \int_a^b f \leq \int_a^b g(x) dx$$

Proof: since $0 \le g(x) - f(x)$ for all $x \in [a, b]$ we have

$$0 \cdot (b-a) \le \int_a^b (g-f) \Rightarrow 0 \le \int_a^b g - \int_a^b f$$

Theorem 0.1.60 If f is integrable on [a, b] then |f| is integrable and

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$$

Proof: Let P be any partition of [a, b] and

$$M_{k} = \sup\{f(x) : x \in [x_{k-1}, x_{k}]\}$$

$$m_{k} = \inf\{f(x) : x \in [x_{k-1}, x_{k}]\}$$

$$M'_{k} = \sup\{|f(x)| : x \in [x_{k-1}, x_{k}]\}$$

$$m'_{k} = \inf\{|f(x)| : x \in [x_{k-1}, x_{k}]\}$$

claim: $M'_k - m'_k \le M_k - m_k$

For all $\epsilon > 0$ there exist $y, z \in [x_{k-1}, x_k]$ s.t

$$M'_k - \frac{1}{2}\epsilon < |f(y)|$$
$$m'_k + \frac{1}{2}\epsilon > |f(z)|$$

$$\begin{aligned} M'_k - m'_k - \epsilon &< |f(y)| - |f(z)| \\ &\leq |f(y) - f(z)| \\ &\leq M_k - m_k \end{aligned}$$

$$M'_k - m'_k \le M_k - m_k$$

Let P any partition of [a, b] then

$$U(|f|, P) - L(|f|, P) = \sum_{k=1}^{n} (M'_{k} - m'_{k})(x_{k} - x_{k-1})$$
$$\leq \sum_{k=1}^{n} (M_{k} - m_{k})(x_{k} - x_{k-1})$$
$$= U(f, P) - L(f, P)$$

Thus,

$$\begin{aligned} -|f(x)| &\leq f(x) \leq |f(x)| \Rightarrow -\int_{a}^{b} |f| \leq \int_{a}^{b} f \leq \int_{a}^{b} |f| \\ &\Rightarrow \left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f| \end{aligned}$$

The fundamental theorem of calculus

Theorem 0.1.61 FTC part 1 assume that

- (i). f is integrable on [a, b]
- (ii). F is differentiable on [a, b] and

$$F'(x) = f(x) \quad \forall x \in [a, b]$$

Then

$$\int_{a}^{b} f = F(b) - F(a)$$

Proof: let P be any partition of [a, b]

$$F(b) - F(a) = \sum_{k=1}^{n} [F(x_k) - F(x_{k-1})]$$

By the MVT = $\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$ $t_k \in (x_{k-1}, x_k)$
 $\leq \sum_{k=1}^{n} M_k(x_k - x_{k-1})$
= $U(f, P)$
 $\geq L(f, P)$

let P be any partition of [a, b], then

$$L(f, P) \le F(b) - F(a) \le U(f, P)$$

Taking sup/inf over all partitions gives

$$L(f) \le F(b) - F(a) \le U(f)$$

Since f is integrable it follows that

$$L(f) = U(f) = F(b) - F(a)$$

Theorem 0.1.62 FTC part 2 let f be integrable on [a, b] and define

$$F(x) = \int_{a}^{x} f(t)dt$$
 where $x \in [a, b]$

Then

(i). F is uniformly continuous on [a, b]

(ii). if f is continuous at c, then F is differentiable at c and

$$F'(c) = f(c)$$

Proof(1) since f is integrable on [a, b] there exists M > 0 s.t.

$$|f(x)| \le M \quad \forall x \in [a, b]$$

If $x, y \in [a, b]$ with $x \ge y$, then

$$|F(x) - F(y)| = \left| \int_{y}^{x} f(t) dt \right|$$
$$\leq \int_{y}^{x} |f(t)| dt$$
$$\leq M|x - y|$$

For given $\epsilon > 0$ take $\delta = \epsilon/M$.

Proof(2): for $x \neq c$ we have

$$\frac{F(x) - F(c)}{x - c} - f(c) = \frac{1}{x - c} \int_{c}^{x} f(t)dt - f(c)$$
$$= \frac{1}{x - c} \int_{c}^{x} f(t) - f(c)dt$$

Let $\epsilon > 0$ be arbitrary and pick $\delta > 0$ s.t

$$|x-c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon$$

Since $|t - c| \le |x - c| < \delta$ it follows that

$$\left|\frac{F(x) - F(c)}{x - c} - f(c)\right| = \frac{1}{|x - c|} \left| \int_{c}^{x} f(t) - f(c) dt \right|$$
$$\leq \frac{1}{|x - c|} \cdot |x - c| \cdot \epsilon$$
$$= \epsilon$$