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The Real Numbers

The Irrationality of
√
2

Theorem 0.0.1 The is no rational number whose square is 2

Proof:assume
√

2 = p/q for some p, q ∈ Z with gcd(p, q) = 1

⇒ p2 = 2q2

⇒ p2 is even, so p itself is even, say p = 2k

⇒ 4k2 = 2q2 so 2k2 = q2

⇒ q2 is even, which bring a contradiction becuase we assumed that gcd(p, q) = 1

Some Preliminaries

Definition 0.0.1 (set) A set is any collection of objects. These objects are
referred to as elements of the set

Set-Theoretic Notation:

• A ∪B: A union B

• A ∩B: A intersect B

• Ac: {x ∈ Ω : x 6∈ A} ⇒ complement of A

• w ∈ Ω: w is an element of Ω;

• A ⊆ Ω: A is an subset of Ω

• B ⊇ A: B contains A (its the same of the previous);

• The set ∅ is called empty set

•
⋃
n=NAn ⇒ A1 ∪A2 · · ·

Theorem 0.0.2 (De Morgan’s Laws) Let A and B be subsets of R, then:
(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc
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Proof : We begin by showing that (A ∩B)c ⊆ Ac ∪Bc.
Suppose x ∈ (A∩B)c, which means that x 6∈ (A∩B). Therefore, x 6∈ A∪B,

which means that x ∈ Ac ∪Bc. Hence, (A ∩B)c ⊆ Ac ∪Bc.
Our proof is now halfway done. To complete it we show the opposite subset

inclusion. First we begin with an element x in the set Ac ∪ Bc, which means
that x is an element of Ac or that x is an element of Bc. Thus x is not an
element of a least one of the sets A or B. So, x cannot be an element of both A
and B. This means that x is an element of (A∩B)c. Therefore, we have proved
the law.

Definition 0.0.2 (Function) Given two sets A,B, a function from A to B is
a rule or mapping that takes each element x ∈ A and associates with it a single
element of B. In this case, we write f : A → B. Given an element x ∈ A, the
expression f(x) is used to represent the element of B associated with x by f .
The set A is called the domain of f . The range of f is not necessarily equal to
B but refers to the subsets of B given by {y ∈ B : y = f(x) for some x ∈ A}.
That is, the set of all f -images of all the elements of A is known as the range
of f . Thus, range of f is denoted by f(A). B is the co-domain.

This definition of function is more or less the one proposed by Peter Lejeune
Dirichlet (1805-1859) in the 1830s.

Absolute Value

Definition 0.0.3 (Absolute Value)

|x| =

{
x if x ≥ 0

−x if x < 0

Lemma 0.0.1 |x| =max{x,−x}

Proof:
First case:

x > 0⇒ −x ≤ 0

⇒ −x ≤ x
⇒ max{−x, x} = x = |x|

Second case:

x < 0⇒ −x > 0

⇒ −x > x

⇒ max{−x, x} = −x = |x|

Definition 0.0.4 (Product rule)

|xy| = |x| · |y|
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Proof:

• If x > 0, y > 0, then by def. |xy| = xy and by def. xy = |x||y|;

• if x = 0, y = 0 it is obvious that is true: 0 = 0 ;

• If x < 0, y > 0, then |xy| = (−x)y which by def. (−x) = |x|, y = |x|,
therefore (−x)y = |x||y|;

• If x > 0, y > 0 same way of the previus;

• If x < 0, y < 0, then |xy| = (−x)(−y) = |x||y|

Definition 0.0.5 (quotient rule)∣∣∣∣xy
∣∣∣∣ =
|x|
|y|

where y 6= 0

Proof:

• if x = 0, y > 0, then
∣∣∣ 0y ∣∣∣ = 0

y = 0;

• same for x = 0, y < 0;

• x < 0, y > 0, then
∣∣∣xy ∣∣∣ = −x

y by def. ⇒ |x|
|y| ;

• the same logic for x < 0, y < 0 and x > 0, y < 0

Inequalities

Lemma 0.0.2
|x| ≤ a⇔ −a ≤ x ≤ a

Proof:

|x| ≤ a⇒ max{−x, x} ≤ a
⇒ −x ≤ a, x ≤ a
⇒ −a ≤ x ≤ a

Theorem 0.0.3 (Triangle inequality)

|x+ y| ≤ |x|+ |y|

Proof:

• if x + y > 0, then |x + y| = x + y ≤ |x| + y by lemma 1.2.1, which is the
same for y ≤ |y| therefore |x+ y| ≤ |x|+ |y|;

• if x+ y < 0, then |x+ y| = −x− y ≤ |x|+ |y| by lemma 1.2.1
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Hence, |x+ y| = max{x+ y,−x− y} ≤ |x|+ |y| ⇒ |x+ y| ≤ |x|+ |y|

Theorem 0.0.4 (Reverse triangle inequalities)

||x|+ |y|| ≤ |x− y|

Proof:

• |x| = |x+ y − y| ≤ |x− y|+ |y| by theorem 1.2.2;

• |x| − |y| ≤ |x− y| which is the same as |y| − |x| ≤ |y − x| = |x− y|;

• max{|x| − |y|, |y| − |x|} = ||x|+ |y|| ≤ |x− y|

Theorem 0.0.5 Two real numbers a, b are equals if and only if for every real
number ε > 0 it follows that |a− b| < ε

Induction

Induction is used in conjunction with the natural numbers N. The fundamental
principle behind induction is that if S is some subset of N with the property
that

(i). S contains 1 and

(ii). whenever S contains a natural number n, it also contains n+ 1,

then it must be that S = N.
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The Axiom of Completeness

Definition 0.0.6 A set A ⊆ R is bounded above if there exist a number b ∈ R
such that a ≤ b for all a ∈ A. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound l ∈ R
satisfying l ≤ a for every a ∈ A

Definition 0.0.7 (least upper bound) s ∈ R is called the least upper bound
of A ⊆ R if it meets the following two criteria:

(i). s is an upper bound for A;

(ii). if b is any upper bound for A, then s ≤ b

The least upper bound is also frequently called the supremum of the set A: s =
supA

Lemma 0.0.3 if s is an upper bound for A then

s = supA⇔ ∀ε > 0 ∃a ∈ A s.t. s− ε < a

Proof:
(1)Let ε > 0, then

s− ε < s⇒ s− ε is not an upper bound for A

⇒ ∃a ∈ A s.t. s− ε < a

(2)Let b be any upper bound for A

if b < s⇒ ε = s− b there exist a ∈ A s.t

⇒ b = s− ε < s

This bring a contradiction. Hence, s ≤ b, which means that s = supA

Definition 0.0.8 (greatest lower bound) i ∈ R is called the greatest lower
bound of A ⊆ R if

(i). i is a lower bound for A

(ii). if l is any lower bound for A then l ≤ i

Notation:i = infA (infimum)

Lemma 0.0.4 if i is a lower bound for A then

i = infA⇔ ∀ε > 0 ∃a ∈ A s.t. a < i+ ε

Proof:
(1)Let ε > 0

i < i+ ε⇒ i+ ε cannot be a lower bound for A

⇒ ∃a ∈ A s.t a < i+ ε
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(2)Let l be any lower bound for A

if i < l⇒ ε = l − i
⇒ ∃a ∈ A s.t. l = ε+ i > a

This is a contradiction, therefore l ≤ i, which means that i = infA

Axiom of Completeness (AoC) 1 every nonempty subset of R that is bounded
above has a least upper bound

Consequences of completeness

Theorem 0.0.6 (The Archimedean property) Theorem:

(i). ∀x ∈ R ∃n ∈ N s.t. n > x

(ii). ∀y > 0 ∃n ∈ N s.t 1/n < y

Proof:(1) We prove the theorem by contradiction. If (1) is not true, then N is
bounded above.

• AoC⇒ α = supN exists.

• α− 1 is not an upper bound for N.

• There exist n ∈ N such that α− 1 < n by lemma 1.3.1⇒ α < n+ 1

• n+ 1 ∈ N⇒ α is not an upper bound for N. Contradiction!

(2)

• AoC⇒ α = infN

• α+ 1 is not an lower bound for N

• There exist n ∈ N such that n < α+ 1 by lemma 1.3.2

• n−1 < α, which means that α is not a lower bound for N. Contradiction!

But there is another way to prove part (2), and it’s using (i):
Let y > 0 be arbitrary and set x = 1/y. By (i) there exist n ∈ N such that

n > x. Therefore 1/y < n⇒ 1/n < y

Theorem 0.0.7 (Nested Interval Property) For each n ∈ N, assume we
are given a closed interval In = [an, bn] = {x ∈ R : an ≤ x ≤ bn}. Assume
also that each In contains In+1. Then, the resulting nested sequence of closed
intervals

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

has a non-empty intersection; that is,

∞⋂
n=1

In 6= ∅
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Proof:Define A = {an : n ∈ N}

• Every bn is an upper bound for A

• AoC⇒ x = supA⇒ x ≤ bn by def. 1.3.2

• moreover, an ≤ x

• Therefore, an ≤ x ≤ bn

Remark! The NIP requires the intervals to be closed!

The rational number are dense in R

Theorem 0.0.8

∀a, b ∈ R with a < b ∃r ∈ Q s.t a < r < b

Proof:Only case 0 ≤ a < b:

• AP⇒ there exist n,m ∈ N such that 1/n < b− a and na < m

• we can choose this an small enough to be sandwich by m,m−1⇒ m−1 ≤
na < m

• m ≤ na+ 1 < n(b− 1
n ) + 1 = nb

• hence, m ≤ nb and na < m which means that a < m
n < b

Corollary 0.0.9 (Density of in R) Given two real numbers a < b, there ex-
ists an irrational number satisfying a < t < b

Existence of square roots

Theorem 0.0.9 ∃α ∈ R s.t. α2 = 2

Cardinality

The term cardinality is used in mathematics to refer to the size of a set.

1-1 Correspondence

Definition 0.0.10 (A one-to-one or injective, surjective, bijective functions)
A function f : A→ B is

• one-to-one (1-1) if a1 = a2 in A implies that f(a1) = f(a2) in B.

• onto or surjective if, given any b ∈ B, it is possible to find an element
a ∈ A for which f(a) = b.
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• bijective if f is both injective and surjective

Definition 0.0.11 Two sets A,B have the same cardinality if there exists a
bijective function f : A→ B

Notation: A ∼ B

Theorem 0.0.10 ∼ is an equivalence relation:

(i). A ∼ A

(ii). A ∼ B ⇔ B ∼ A

(iii). A ∼ B and B ∼ C ⇒ A ∼ C

Countable sets

Definition 0.0.12 A set A is called

• countable if A ∼ S for some S ⊆ N

• uncountable otherwise

Lemma 0.0.5 A countable ⇔ ∃f : A→ N injective

Lemma 0.0.6 A countable ⇔ ∃g : N→ A surjective

Corollary 0.0.13

B countable
f : A→ B injective

}
⇒ A countable

A countable
g : A→ B surjective

}
⇒ B countable

Theorem 0.0.11 two parts:

(i). The set Q is countable

(ii). the set R is uncountable

Proof(ii): Assume R is countable.
If g : N→ R is surjective, then

R = {x1, x2, x3, x4, ...} where xn = g(n)

To show: ∃x ∈ R s.t x 6= xn ∀n ∈ N
Choose closed and bounded intervals as follows:

l1 such that x1 6∈ l1
l2 ⊆ l1 such that x2 6∈ l2
l3 ⊆ l2 such that x3 6∈ l3

...

NIP ⇒ ∃x ∈ R s.t. x ∈ ∩∞n=1In. But x 6= xn for all n ∈ N because xn 6∈ In.
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Corollary 0.0.14 Qc = R\Q

Proof: We know that Q is countable
Qc countable ⇒ R = Q ∪ Qc countable. Contradiction! That is, there are
”more” irrationals than rationals

Theorem 0.0.12 If A ⊆ B and B is countable, then A is either countable or
finite

Theorem 0.0.13 two parts:

(i). if A1, A2, ..., Am are each countable sets, then the union A1∪A2∪· · ·∪Am
countable

(ii). If An is countable set for each n ∈ N, then
⋃∞
n=1An is countable

Cantor’s Theorem

Cantor published his discovery that R is uncountable in 1874.

Theorem 0.0.14 The open interval (0, 1) = {x ∈ R : 0 < x < 1} is uncount-
able

Proof: take any g : N→ (0, 1), then

g(1) = 0.d11d12d13d14 · · ·
g(2) = 0.d21d22d23d24 · · ·
g(3) = 0.d31d32d33d34 · · ·

...

Define t ∈ (0, 1) by

t = 0.c1c2c3c4 · · · cn =

{
2 if dnn 6= 2

3 if dnn = 2

Then t 6= g(n) for all n ∈ N so g is not surjective
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Sequences and Series

The limit of a Sequence

Definition 0.0.15 A sequence is a function whose domain is N

Definition 0.0.16 (Convergence of a Sequence) an converges to a if

∀ε > 0 ∃N ∈ N s.t. n ≥ N ⇒ |an − a| < ε

Notation: a = lim an or (an)→ a

Definition 0.0.17 (neighborhood) For a ∈ R and ε > 0 the set

Vε(a) = {x ∈ R : |x− a| < ε}

is called the ε-neighborhood of a

Definition 0.0.18 (Convergence of a sequence: topological version) A se-
quence (an) converges to a if, given any ε-neighborhood Vε(a) of a, there exist a
point in the sequence after which all of the terms are in Vε(a). In other words,
every ε-neighborhood contains all but a finite number of the terms of an:

∀ε > 0 ∃N ∈ N s.t. n ≥ N ⇒ an ∈ Vε(a)

Moral: the tail of the sequence gets trapped in Vε(a)

Theorem 0.0.15 (Uniqueness of Limits) The limit of a sequence, when it
exists, must be unique

Standard limits

• lim 1/nα = 0 (α > 0)

• lim cn = 0 (−1 < c < 1)

• lim cnnα = 0 (−1 < c < 1, α ∈ R)

• lim n
√
c = 1 (c > 0)

• lim n
√
n = 1

• limn!/nn = 0

Definition 0.0.19 (divergent sequence) A sequence that does not converge
is called divergent
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For understand what does it mean we need to obtain a Logical negation from
the definition of convergence.

Logical negation:

∃ε > 0 s.t ∀N ∈ N s.t. |an − a| ≥ ε

Definition 0.0.20 (an) is bounded if

∃M > 0 s.t |an| ≤M ∀n ∈ N

Theorem 0.0.16 if (an) is convergent ⇒ (an) is bounded

Proof: let a = lim an, then for ε = 1 there exist N ∈ N such that

n ≥ N ⇒ |an − a| < 1

⇒ ||an| − |a|| < 1

⇒ |an| − |a| < 1

⇒ |an| < 1 + |a|

For M = max{|a1|, |a2|, |a3|, ..., |aN−1|, 1 + |a|} we have

|an| ≤M ∀n ∈ N

Warning: the converse is not true!
NOTE:Theorem can be used to prove that a sequence diverges

0.1 Algebraic properties

Theorem 0.1.1 if a = lim an and b = lim bn then

(i). lim(can) = ca where c ∈ R

(ii). lim(an + bn) = a+ b

(iii). lim(anbn) = ab

(iv). lim(an/bn) = a/b if b 6= 0

Proof (ii):

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|

Let ε > 0 be arbitrary, then

∃N1 ∈ N s.t. n ≥ N1 ⇒ |an − a| <
1

2
ε

∃N2 ∈ N s.t. n ≥ N1 ⇒ |an − a| <
1

2
ε
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Define N = max{N1, N2} then

n ≥ N ⇒ |(an − bn)− (a+ b)| < 1

2
ε+

1

2
ε = ε

Proof (iii):

|anbn − ab| = |anbn − abn + abn − ab|
= |bn(an − a) + a(bn − b)|
≤ |bn(an − a)|+ |a(bn − b)|
= |bn||an − a|+ |a||bn − b|
≤M |an − a|+ |a||bn − b| (bn)is convergent and therefore bounded

Let ε > 0 be arbitrary, then

∃N1 ∈ N s.t. n ≥ N1 ⇒ |an − a| <
1

2M
ε

∃N2 ∈ N s.t. n ≥ N1 ⇒ |bn − b| <
1

2|a|
ε

Define N = max{N1, N2} then

n ≥ N ⇒ |anbn − ab| <
1

2M
ε+

1

2|a|
ε = ε

Order properties

Theorem 0.1.2 (order limit theorem) if lim an = a and lim bn = b then

(i). an ≥ 0 ∀n ∈ N ⇒ a ≥ 0

(ii). an ≤ bn ∀n ∈ N ⇒ a ≤ b

(iii). c ≤ bn ∀n ∈ N ⇒ c ≤ b

(iv). an ≤ c ∀n ∈ N ⇒ a ≤ c

Proof (i): assume that a < 0
For ε = |a| there exist N ∈ N such that

n ≥ N ⇒ |an − a| < ε

⇒ −ε < an − a < ε

⇒ a− ε < an < a+ ε

⇒ an < a+ |a| = 0

Contradiction!

Note: Loosely speaking, limits and their properties do not depend at all on
what happens at the beginning of the sequence but are strictly determined by
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what happens when n gets large. In the language of analysis, when a property is
not necessarily possessed by some finite number of initial terms but is possessed
by all terms in the sequence after some point N , we say that the sequence
eventually has this property.

Theorem 0.1.3 (Squeeze theorem) If xn ≤ yn ≤ zn for all n ∈ N, and if
limxn = lim zn = l, then lim yn = l as well.

Proof: Given ε > 0, there existsN1, N2 ∈ N such that whenever n ≥ N1, n ≥ N2,
|xn − l| < ε and |zn − l| < ε

Choose N = max{N1, N2} then we get whenever n ≥ N , |xn−l| < ε, |zn−l| < ε.
This gives

−ε < xn − l ≤ yn − l ≤ zn − l < ε

−ε < yn − l < ε⇒ |yn − l| < ε

or
If y = lim yn then by thm yn ≤ zn ⇒ y ≤ l and xn ≤ yn ⇒ l ≤ y. Therefore,
l ≤ y ≤ l. Hence, y = l.

The monotone convergence theorem and infinite series

Definition 0.1.1 (an) is called monotone if is either

• increasing: an ≤ an+1 ∀n ∈ N

• decreasing: an+1 ≤ an ∀n ∈ N

Theorem 0.1.4 (Monotone converges theorem (MCT)) (an) bounded &
monotone ⇒ (an) converges. a = lim an exist

Proof: A = {an : n ∈ N} is bounded Strategy of proof:

• an increasing ⇒ lim an = supA

• an decreasing ⇒ lim an = infA

Assume that (an) increases

Let s = sup{an : n ∈ N}

Let ε > 0 be arbitrary, then s − ε is not an upper bound. Therefore, there
exists N ∈ N s.t. s− ε < aN .
For n ≥ N we have

s− ε < aN ≤ an ≤ s < s+ ε ⇒ |an − s| < ε

Assume that (an) decreses
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Let i = inf{an : n ∈ N}

Let ε > 0 and arbitrary, then i + ε is not an lower bound. Therefore, there
exist N ∈ N s.t aN < i+ ε.
For n ≥ N we have

i+ ε > aN ≥ an ≥ i > i− ε ⇒ |an − i| < ε

Subsequences

Definition 0.1.2 pick nk ∈ N such that

1 ≤ n1 < n2 < n3 < · · ·

If (an) is a sequence then

(ank
) = (an1 , an2 , an3,...)

is called a subsequence of (an). Note: nk ≥ k since k ∈ N

Theorem 0.1.5 lim an = a⇒ lim ank
= a

Proof: let ε > 0 be arbitrary, then

∃N ∈ N s.t n ≥ N ⇒ |an − a| < ε

k ≥ N ⇒ nk ≥ N
⇒ |ank

− a| < ε

Theorem 0.1.6 (Bolzano-Weierstrass theorem) Every bounded sequence has
a convergent subsequence.

Proof: There exists M > 0 such that an ∈ [−M,M ] for all n

Bisect the closed interval [−M,M ] into two closed intervals [−M, 0], [0,M ].
Halving-process gives nested closed intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

NIP ⇒ there exists x ∈
⋂∞
n=1 In

each Ik contains infinitely many terms of the seq.

• pick n1 ∈ N with an1 ∈ I1
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• pick n2 ∈ N with n2 > n1 and an2 ∈ I2

• pick n3 ∈ N with n3 > n1 and an3 ∈ I3
...

Note that

x ∈ Ik
ank

∈ Ik

}
⇒ |ank

− x| ≤ length(Ik) =
2M

2k
→ 0

Infinitely series 1

Definition 0.1.3

• Infinite series:
∞∑
k=1

ak = a1 + a2 + a3 + · · ·

• n-th partial sum:
sn = a1 + a2 + · · ·+ an

• if lim sn = s, then we say the series converges to s

Theorem 0.1.7 (Euler’s famous example)

∞∑
k=1

1

k2
converges

Proof:

sn = 1 +
1

4
+

1

9
+ · · ·+ 1

n2

sn < sn+1 ∀n ∈ N
sn < 2

MCT ⇒ lim sn exists

This because

sn = 1 +
1

2 · 2
+

1

3 · 3
+

1

4 · 4
+ · · ·+ 1

n · n

< 1 + 12 · 1 +
1

3 · 2
+

1

4 · 3
+ · · ·+ 1

n · (n− 1)

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 1 + 1− 1

n
< 2
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Remark: since sn < 2 for all n the order limit theorem implies

∞∑
k=1

1

k2
= lim sn ≤ 2

Euler proved in 1734 that in fact

∞∑
k=1

1

k2
=
π2

6

Theorem 0.1.8 (harmonic seires)

∞∑
k=1

1

k
diverges

The integral test for convergence

Theorem 0.1.9 assume that f : [1,∞]→ R is

(i). positive

(ii). continuous

(iii). monotonically decreasing

Let ak = f(k) then

∞∑
k=1

ak converges⇔
∫ ∞
1

f(x) dx <∞

The Cauchy Criterion

Definition 0.1.4 (Cauchy sequence) (an) is a Cauchy sequence if

∀ε > 0 ∃N ∈ N s.t. n,m ≥ N ⇒ |an − am| < ε

Meaning: the terms get close to each other

Theorem 0.1.10 (an) convergent ⇒ (an) Cauchy

Proof: assume a = lim an
For all ε > 0 there exists N ∈ N such that

n ≥ N ⇒ |an − a| <
1

2
ε

m, n ≥ N ⇒ |an − am| = |(an − a)− (am − a)|
≤ |an − a|+ |am − a|
< ε
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Lemma 0.1.1 (an) Cauchy ⇒ (an) bounded

Proof: for ε = 1 there exists N ∈ N such that

n,m ≥ N → |an − am| < 1

n ≥ N ⇒ |an − aN | < 1

⇒ ||an| − |aN || < 1

⇒ |an| − |aN | < 1

⇒ |an| < 1 + |aN |

For M = max{|a1|, |a2|, ..., |aN−1|, 1 + |aN |} we have

|an| ≤M for all n ∈ N

Theorem 0.1.11 (Cauchy Criterion) (an) Cauchy ⇒ (an) convergent

Proof:
Lemma ⇒ (an) is bounded
For weistrass-bolzano ⇒ (an) has a convergent subsequence (ank

) a = lim ank

For all ε > 0 there exists N ∈ N s.t

n,m ≥ N ⇒ |an − am| <
1

2
ε

Fix an index nk ≥ N such that |ank
− a| < 1

2ε, then

n ≥ N ⇒ |an − a| = |an − ank
+ ank

− a|
≤ |an − ank

|+ |ank
− a|

< ε

Infinite Series Properties

Theorem 0.1.12 (Algebraic Limit Theorem for series) if
∑∞
k=1 ak = A

and
∑∞
k=1 bk = B then

(i).
∑∞
k=1 cak = cA for all c ∈ R

(ii).
∑∞
k=1(ak + bk) = A+B

Theorem 0.1.13 (Cauchy Criterion) the following statements are equiva-
lent

(i).
∑∞
k=1 ak converges

(ii). for all ε > 0 there exists N ∈ N s.t.

n > m ≥ N ⇒ |am+1 + am+2 + · · ·+ an| < ε
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Proof: note that
|sn − sm| = |am+1 + · · ·+ an|

Statement 1 ⇔ (sn) converges ⇔ (sn) Cauchy ⇔ Statement 2

Theorem 0.1.14
∑∞
k=1 ak converges ⇒ lim ak = 0

Proof: let ε > 0 be arbitrary
There exists N ∈ N such that

n > m ≥ N ⇒ |am+1 + am+2 + · · ·+ an| < ε

n = m+ 1 and m ≥ N ⇒ |am+1| < ε

Warning: the converse is NOT true!
Note: the previous theorem also gives a test for divergence

Theorem 0.1.15 (Comparison test) if 0 ≤ ak ≤ bk for all k ∈ N, then

(i).
∑∞
k=1 bk converges ⇒

∑∞
k=1 ak converges

(ii).
∑∞
k=1 ak diverges ⇒

∑∞
k=1 bk diverges

Proof:

|am+1 + am+2 + · · ·+ an| = am+1 + am+2 + · · ·+ an

≤ bm+1 + bm+2 + · · ·+ bn

= |bm+1 + bm+2 + · · ·+ bn|

Apply the Cauchy criterion for series.
Note: this theorem does not be true for all k, but its sufficient that is true for
a k sufficiently large

Theorem 0.1.16 (Alternating series test) assume

(i). 0 ≤ ak+1 ≤ ak for all k ∈ N

(ii). lim ak = 0

then the alternating series
∑∞
k=1(−1)k+1ak converges

Proof: consider the partial sums

sn = a1 − a2 + a3 − · · ·+ (−1)n+1an

the partial sums form nested intervals:

In = [s2n, s2n−1] ⇒ I1 ⊇ I2 ⊇ I3 ⊇ · · ·

NIP ⇒ there exists s ∈ N such that s ∈ In for all n ∈ N

/faculty of Science and Engineering 18



University of Groningen Analysis/Zambelli Lorenzo

Let ε > 0 be arbitrary
Choose N ∈ N such that a2N < ε, then

n ≥ 2N ⇒ s, sn ∈ IN = [s2N , s2N−1]

⇒ |s− sn| ≤ s2N−1 − s2N
⇒ |s− sn| ≤ a2N
⇒ |s− sn| < ε

Theorem 0.1.17 (Absolute vs. conditional convergence)
∑∞
k=1 |ak| con-

verges ⇒
∑∞
k=1 ak converges

Proof: note that

0 ≤ ak + |ak| ≤ 2|ak| for all k ∈ N

Comparison Test ⇒
∑∞
k=1(ak + |ak|) converges

Apply Algebraic Limit Theorem:

∞∑
k=1

ak =

∞∑
k=1

(ak + |ak|)−
∞∑
k=1

|ak| converges

Definition 0.1.5
∑∞
k=1 ak is called

(i). absolutely convergent if
∑∞
k=1 |ak| converges

(ii). conditionally convergent if it converges but
∑∞
k=1 |ak| diverges

Definition 0.1.6 (geometric series) a geometric series is of the form

∞∑
k=0

ark = a+ ar + ar2 + ar3 + · · ·

∞∑
k=0

ark =
a

1− r

If and only if |r| < 1

Definition 0.1.7 telescoping series are the form

∞∑
k=1

ak =

∞∑
k=1

(bk − bk+1)

Successive terms cancel each other:

sn = a1 + a2 + a3 + · · ·+ an

= (b1 − b2) + (b2 − b3) + (b3 − b4) + · · ·+ (bn − bn+1

= b1 − bn+1

The series converges ⇔ (bn) converges
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Basic Topology of R

Interval

Definition 0.1.8 Closed interval (endpoints included):

[a, b] = {x ∈ R : a ≤ x ≤ b}

Definition 0.1.9 Open interval (endpoints not included):

(a, b) = {x ∈ R : a < x < b}

Definition 0.1.10 O ⊂ R is open if

∀a ∈ O ∃ε > 0 s.t. Vε(a) ⊂ O

Note: the empty set ∅ is open by definition

Theorem 0.1.18

(i). Unions of arbitrary collections of open sets are open

(ii). Intersections of finite collections of open sets are open

Proof(i): let O =
⋃
i∈I Oi with each Oi open

x ∈ O ⇒ x ∈ Oi for some i ∈ I
There exists ε > 0 such that Vε(x) ⊂ Oi ⊂ O

Proof(ii): let O = O1 ∩O2 ∩ · · · ∩On with each Oi open
x ∈ O ⇒ x ∈ Oi for all i = 1, ..., n
For all i = 1, ..., n there exists εi > 0 such that Vεi(x) ⊂ Oi For ε = min{ε1, ..., εn}
we have Vε(x) ⊂ Oi for all i = 1, ..., n

Warning: the intersection of infinitely many open sets need not be open!

Definition 0.1.11 (limit point) x is a limit point of A ⊂ R if ∀ε > 0 Vε(x)
intersects A in some point other than x

Note: Limit points of A may or may not belong to A

Theorem 0.1.19 The following statements are equivalent:

(i). x is a limit point of A

(ii). There exists a sequence an in A such that

an 6= x ∀n ∈ N and x = lim an
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Proof (i,ii): let n ∈ N and set ε = 1/n

There exists an ∈ Vε(x) ∩A with an 6= x

Note that |an − x| < ε = 1
n

Proof (ii,i): for all ε > 0 there exists N ∈ N such that

n ≥ N ⇒ |an − x| < ε

In particular, aN ∈ Vε(x)
By assumption aN 6= x and aN ∈ A

Definition 0.1.12 (Closed set) A set is closed if it contains its limit points

Theorem 0.1.20 the following statements are equivalent

(i). F is closed

(ii). Every Cauchy sequence in F has its limit in F

Proof (i,ii): Let (an) ⊂ F be Cauchy

x = lim an exists; now consider two cases:

• x 6= an for all n ∈ N⇒ x is a limit point of F ⇒ x ∈ F

• x = an for some n ∈ N⇒ x ∈ F holds trivally

Proof(ii,i): let x be a limit point of F

x = lim an with an ∈ F and an 6= x for all n ∈ N

(an) is convergent ⇒ (an) Cauchy ⇒ x ∈ F by assumption

Definition 0.1.13 (Closure) the closure of A is defined as

Ā = A ∪ {all limit points of A}

Theorem 0.1.21 Ā is closed

Proof: show that x limit point of Ā⇔ x limit point of A

Ā = A ∪ L with L = {limit points of A}

x limit point of Ā⇒ ∀ε > 0 ∃y ∈ Vε(x) ∩ Ā y 6= x
Note: either y ∈ A or y ∈ L

(i). y ∈ A⇒ x is a limit point of A

(ii). y ∈ L⇒ ∀δ > 0 ∃z ∈ Vδ(y) ∩A z 6= y
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Note: Vδ(y) ⊂ Vε(x)\{x} for δ small enough

Therefore x is a limit point of A

Theorem 0.1.22 (complements)

(i). O open ⇔ Oc closed

(ii). F closed ⇔ F c open

Warning: sets are not likes doors!

• (0, 1] and Q are neither open nor closed

• R and ∅ are both open and closed

Practical consequence: it is impossible to prove openness/ closedness by
contradiction

Theorem 0.1.23 (unions and intersections)

(i). Unions of finite collections of closed sets are closed

(ii). Intersections of arbitrary collections of closed sets are closed

Proof(i):

F1, ..., Fn closed⇒ F c1 , ..., F
c
n open

⇒ F c1 ∩ · · · ∩ F cn open

⇒ (F c1 ∩ · · · ∩ F cn)c closed

⇒ F1 ∪ · · · ∪ Fn closed

Proof (ii):

Fi closed for all i ∈ I ⇒ F ci open for all i ∈ I

⇒
⋃
i∈I

F ci open

⇒ (
⋃
i∈I

F ci )c closed

⇒
⋃
i∈I

Fi closed

The last passage of both proof we have used De Morgan’s laws, which state that
for any collection of sets {Ei : i ∈ I}(⋃

i∈I
Ei

)c
=
⋂
i∈I

Eci and

(⋂
i∈I

Ei

)c
=
⋃
i∈I

Eci

Warning: the union of infinitely many closed sets need not be closed
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Compact sets

Definition 0.1.14 (sequential definition) K ⊂ R is compact if every se-
quence in K has a convergent subq. with a limit in K

Theorem 0.1.24 K ⊂ R compact ⇔ K closed and bounded

Proof(⇒): Assume K is not bounded. There exists (xn) ⊂ K with |xn| > n for
all n ∈ N.

(xn) has no convergent subsequence. Contradiction!

Let x be a limit point of K. There exists (xn) ⊂ K such that x = limxn.

K compact ⇒ there exists a subsequence (xnk
) → y ∈ K. (xnk

) → x as
well ⇒ x = y ∈ K

Proof(⇐): let (xn) ⊂ K. K is bounded ⇒ (xn) is bounded.

B-W Theorem ⇒ (xn) has a convergent subsequence. Let x = limxnk
. Hence,

K is closed ⇒ x ∈ K

Theorem 0.1.25 (Generalization of the NIP) assume that Kn 6= ∅ is com-
pact for all n ∈ N and

K1 ⊇ K2 ⊇ K3 ⊇ · · ·

Then
⋂∞
n=1Kn is nonempty

Open covers

Definition 0.1.15 Let A ⊂ R and assume that the sets Oi ⊂ R where i ∈ I,
are open. We call the sets Oi an open cover for A if

A ⊂
⋃
i∈I

Oi

Theorem 0.1.26 K compact ⇔ any open cover for K has a finite subcover

Proof(⇒):

Let Oi, i ∈ I, be an open cover for K without finite subcover.

Take a bounded, closed interval J1 ⊃ K

Halving process: construct Jn be closed intervals s.t.

• J1 ⊃ J2 ⊃ J3 ⊃ · · ·

• K ∩ Jn can not be coverd by finitely many Oi’s

/faculty of Science and Engineering 23



University of Groningen Analysis/Zambelli Lorenzo

K ∩ Jn compact for all n ∈ N⇒
⋂∞
n=1(K ∩ Jn) 6= ∅.

There exists x ∈ K such that x ∈ Jn for all n

x ∈ Oi for some i ∈ I and let ε > 0 such that Vε(x) ⊂ Oi

There exists N ∈ N such that length(JN )< ε

Hence, K ∩ JN ⊂ JN ⊂ Vε(x) ⊂ Oi. Contradiction!

Proof(⇐):

On = (−n, n), n ∈ N, is an open cover for K.

K ⊂ O1 ∪O2 ∪ · · · ∪ON = (−N,N) for some N ∈ N. Therefore, K is bounded.

Let y be a limit point K

There exists (yn) ⊂ K with y = lim yn. Assume y 6∈ K

Let x ∈ K and Ox = Vε(x) with ε = 1
2 |x− y|

The sets, Ox, where x ∈ K, form an open cover for K

There exist x1, ..., xn ∈ K such that K ⊂ Ox1 ∪ · · · ∪Oxn

Pick N ∈ N such that |yN − y| < min{ 12 |xi − y| : i = 1, ..., n}

Hence, yN 6∈ Ox1
∪ · · · ∪Oxn

Contradiction!

Theorem 0.1.27 (Heine-Borel) Let K ⊂ R, the following statements are
equivalent:

(i). K is compact

(ii). K is closed and bounded

(iii). Any open cover for K has a finite sets.

Functional Limits and Continuity

Definition 0.1.16 Let f : A → R and c a limit point of A. We say that
limx→c f(x) = L when

∀ε > 0 ∃δ > 0 s.t

{
0 < |x− c| < δ

x ∈ A

}
⇒ |f(x)− L| < ε

Note: f need not be defined at c
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Theorem 0.1.28 (Sequential characterization) Let f : A → R and c a
limit point of A.
The following statements are equivalent

(i). limx→c f(x) = L

(ii). lim f(xn) = L for all (xn) ⊂ A with xn 6= c and limxn = c

Corollary 0.1.17 consider f : A→ R and let c be a limit point of A. limx→c f(x)
does not exist if there exist xn,yn ⊂ A s.t.

• xn 6= c and yn 6= c

• limxn = lim yn = c

• lim f(xn) 6= lim f(yn)

Theorem 0.1.29 (Algebraic properties) Let f : A → R, c a limit point of
A, and

lim
x→c

f(x) = L and lim
x→c

g(x) = M

Then

(i). limx→c kf(x) = kl k ∈ R

(ii). limx→c[f(x) + g(x)] = L+M

(iii). limx→c[f(x)g(x)] = LM

(iv). limx→c[f(x)/g(x)] = L/M provided M 6= 0

Definition 0.1.18 f : A→ R is continuous at c ∈ A if

∀ε > 0 ∃δ > 0 s.t

{
|x− c| < δ
x ∈ A

}
⇒ |f(x)− f(c)| < ε

Notes: f(c) needs to be defined, but c need not be a limit point of A. Moreover,
δ may depend on both ε and c

Example: if c ∈ A is isolated then f : A→ R is continuous at c.

Let ε > 0 be arbitrary

Take δ > 0 such that Vδ(c) ∩A = {c}, then

|x− c| < δ and x ∈ A⇒ x ∈ Vδ(c) ∩A
⇒ x = c

⇒ f(x) = f(c)

⇒ |f(x)− f(c)| = 0 < ε
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Theorem 0.1.30 let f : A → R and c ∈ A. the following statements are
equivalent:

(i). f is continuous at c

(ii). (xn) ⊂ A and limxn = c⇒ lim f(xn) = f(c)

If c is a limit point of A then (i) and (ii) are also equivalent with

(iii). limx→c f(x) = f(c)

Corollary 0.1.19 let f : A → R and c ∈ A a limit point, f is not continuous
at x = c if there exists (xn) ⊂ A s.t

• x 6= c

• limxn = c

• lim f(xn) 6= f(c)

Continuity and compactness

Theorem 0.1.31 f : A→ R cont. and K ⊂ A compact ⇒ f(K) compact

Proof: Let (yn) ⊂ f(K) be arbitrary

There exists (xn) ⊂ K such that yn = f(xn) for all n

K compact ⇒ some subsequence xnk
→ x ∈ K

f continuous ⇒ ynk
= f(xnk

)→ f(x) ∈ f(K)

Warning: the previous theorem is false for pre-image:

f−1(K) = {x ∈ A : f(x) ∈ K}

Theorem 0.1.32 (Maxima and Minima) Let K ⊂ R be compact and f :
K → R continuous, then f attains a maximum and a minimum on K

Proof (max): f(K) is compact

s = supf(K) exists and s ∈ f(K)

s = f(c) for some c ∈ K

s is an upper bound for f(K)⇒ f(x) ≤ s for all x ∈ K

Warning: without compactness the previous theorem is false!
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Uniform continuity

Theorem 0.1.33 f : A→ R is uniformly continuous on A if

∀ε > 0 ∃δ > 0 such that ∀x, y ∈ A |x− y| < δ ⇒ |f(x)− f(y)| < ε

Note: uniform means that δ does not depend on x or y

Logical negation: ∃ε0 > 0 such that ∀δ > 0 ∃x, y ∈ A for which

|x− y| < δ but |f(x)− f(y)| ≥ ε0

Theorem 0.1.34 the following statements are equivalent

(i). f : A→ R is not uniformly continuous on A

(ii). There exists ε0 > 0 and (xn), (yn) ⊂ A such that

|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0 for all n

Theorem 0.1.35 if f : K → R is continuous and K is compact then f is
uniformly continuous on K

Proof: let ε > 0 be arbitrary

For all c ∈ K there exists δc > 0 such that

|x− c| < 2δc ⇒ |f(x)− f(c)| < 1

2
ε for cosmetic purposes

Oc = (c− δc, c+ δc), with c ∈ K, form an open cover for K

K ⊂ Oc1 ∪ · · · ∪Ocn for some c1, ..., cn ∈ K

Take x, y ∈ K with |x− y| < δ = min{δc1 , ..., δcn}

(1)

|x− ci| < δci for some i = 1, ..., n

|f(x)− f(y)| < 1

2
ε

(2)

|ci − y| ≤ |ci − x|+ |x− y| < δci + δ ≤ 2δci

|f(ci)− f(y)| < 1

2
ε

Apply triangle inequality with the (1) and (2) we have proved that the theorem
holds.
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Intermediate value theorem

Theorem 0.1.36 if f : [a, b]→ R is continuous and

f(a) < L < f(b) or f(a) > L > f(b)

then f(c) = L for some c ∈ (a, b)

Proof: without loss of generality we can assume

• L = 0, otherwise replace f(x) by f(x)− L

• f(a) < 0 < f(b), otherwise replace f(x) by −f(x)

the bisection method gives nested intervals In:

At the left endpoint of each In we have f < 0

At the right endpoint of each In we have f ≥ 0

there exist intervals In = [an, bn] such that

• f(an) < 0 and f(bn) ≥ 0

• I0 ⊃ I1 ⊃ I2 ⊃ · · ·

• length(In) = (b− a)/2n

NIP⇒ ∃c ∈ [a, b] such that c ∈ In = [an, bn] ∀

Derivatives

Definition 0.1.20 Let I ⊆ R be an interval and f : I → R, f is called differ-
entiable at c ∈ I if

f ′(c) := lim
x→c

f(x)− f(c)

x− c
exists

Theorem 0.1.37 f : I → R differentiable at c ∈ I ⇒ f continuous at c
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Proof:

lim
x→c

[f(x)− f(c)] = lim
x→c

f(x)− f(c)

x− c
(x− c)

= lim
x→c

f(x)− f(c)

x− c
· lim
x→c

[x− c]

= f ′(c) · 0
= 0

Theorem 0.1.38 (Interior extremum theorem) assume

• f : (a, b)→ R is differentiable

• f attains a maximum or minimum at c ∈ (a, b)

then f ′(c) = 0

Proof (maximum): f(c) ≥ f(x) for all x ∈ (a, b)

Take sequences (xn) and (yn) in (a, b) such that

xn < c < yn ∀n ∈ N and limxn = lim yn = c

f ′(c) = 0 by the order limit theorem:

f ′(c) = lim
f(xn)− f(c)

xn − c
≥ 0

f ′(c) = lim
f(yn)− f(c)

yn − c
≤ 0

Warning: for closed intervals the previous theorem may be false!

Theorem 0.1.39 (Darboux’s theorem) if f : [a, b] → R is differentiable
and

f ′(a) < L < f ′(b) or f ′(a) > L > f ′(b)

then there exist c ∈ (a, b) with f ′(c) = L

Note:

• proof6= intermediate value theorem applied to f ′

• we do not assume f ′ to be continuous

Proof: restrict to the case f ′(a) < 0 < f ′(b), Otherwise replace f(x) by
±(f(x)− Lx).

claim: ∃s ∈ (a, b) s.t. f(s) < f(a)

Otherwise f(x) ≥ f(a) ∀x ∈ (a, b) so that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
≥ 0 Contradiction!
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Similarly: ∃t ∈ (a, b) such that f(t) < f(b)

[a, b] compact and f continuous ⇒ f attains a minimum on [a, b]

f(s) < f(a) and f(t) < f(b) ⇒ f attains a minimum in (a, b)

Interior extremum theorem ⇒ f

Mean value theorem

Theorem 0.1.40 (Rolle’s theorem) assume that

• f : [a, b]→ R is continuous and differentiable on (a, b

• f(a) = f(b)

then there exists c ∈ (a, b) such that f ′(c) = 0

Proof: f cont. and [a, b] cpt. ⇒ f attains max/min values

f(a) = f(b) both max and min ⇒ f is constant

⇒ f ′(x) = 0 for all x

⇒ take any c ∈ (a, b)

Otherwise, a max or min is attained at c ∈ (a, b)

Then f ′(c) = 0 by interior extremum theorem

Theorem 0.1.41 (Mean value theorem) if

• f : [a, b]→ R is continuous

• f is differentiable on (a, b)

Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
Proof: apply Rolle’s theorem to

h(x) = f(x)−
[
f(b)− f(a)

b− a
(x− a) + f(a)

]
then

k(x) =
f(b)− f(a)

b− a
(x− a) + f(a)

h(x) = f(x)− k(x) is continuous on [a, b] and differentiable on (a, b)

h(a) = h(b) = 0

By Rolle’s theorem: ∃c ∈ (a, b) s.t.

h
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Sequence and Series of Functions

Pointwise convergence

Definition 0.1.21 converges pointwise consider fn : A→ R

(fn) converges pointwise to f : A→ R if for all fixed x ∈ A

lim fn(x) = f(x)

Thus: for each fixed x ∈ A we have

∀ε > 0 ∃Nε,x ∈ N s.t n ≥ Nε,x ⇒ |fn(x)− f(x)| < ε

Uniform convergence

Definition 0.1.22 Uniform convergence (fn) converges uniformly to f :
A→ R if

∀ε > 0 ∃Nε ∈ N s.t n ≥ Nε ⇒ |fn(x)− f(x)| < ε ∀x ∈ A

Note: uniform means that Nε is independent of x ∈ A

Theorem 0.1.42 consider fn : A→ R then

fn → f uniformly ⇔ lim

(
sup
x∈A
|fn(x)− f(x)|

)
= 0

Proof(⇒): for ε > 0 there exists Nε ∈ N such that

n ≥ Nε ⇒ |fn(x)− f(x)| < ε ∀x ∈ A
⇒ sup

x∈A
|fn(x)− f(x)| ≤ ε

Proof(⇐): for ε > 0 there exists Nε ∈ N such that

n ≥ Nε ⇒ sup
x∈A
|fn(x)− f(x)| < ε

⇒ |fn(x)− f(x)| < ε ∀x ∈ A

Theorem 0.1.43 Preservation of continuity assume fn : A→ R satisfies

(i). fn → f uniformly on A

(ii). fn is continuous at c ∈ A for all n ∈ N

Then f is continuous at c

Moral: uniform convergence preserves continuity

Proof: for ε > 0 there exist
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• N ∈ N s.t. |fN (x)− f(x)| < 1
3ε for all x ∈ A

• δ > 0 s.t |x− c| < δ ⇒ |fN (x)− fN (c)| < 1
3ε

if |x− c| < δ then

|f(x)− f(c)| = |f(x)− fN (x) + fN (x)− fN (c) + fN (c)− f(c)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (c)|+ |fN (c)− f(c)|

<
1

3
ε+

1

3
ε+

1

3
ε

= ε

Theorem 0.1.44 Term-by-term Continuity Theorem Let fn be continu-
ous functions defined on a set A ⊆ R, and assume

∑∞
n=1 fn converges uniformly

on A to a function f . Then, f is continuous on A

Theorem 0.1.45 Term-by-term Differentiability Let fn be differentiable
functions defined on an interval A, and assume

∑∞
n=1 f

′
n(x) converges uniformly

to a limit g(x) on A. If there exists a point x0 ∈ [a, b] where
∑∞
n=1 fn(x0)

converges, then the series
∑∞
n=1 fn(x) converges uniformly to a differentiable

function f(x) satisfying f ′(x) = g(x) on A. In other words,

f(x) =

∞∑
n=1

fn(x) and

∞∑
n=1

f ′n(x)

Theorem 0.1.46 Weierstrass M-test For each n ∈ N, let fn be a function
defined on a set A ⊆ R, and let Mn > 0 be a real number satisfying

|fn(x)| ≤Mn

For all x ∈ A. If
∑∞
n=1Mn converges, then

∑∞
n=1 fn converges uniformly on A

Power Series

General form of PS:
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·

Theorem 0.1.47
∞∑
n=0

anx
n converges at c 6= 0 ⇒

∞∑
n=0

|anxn| converges for |x| < |c|

Proof:

∞∑
n=0

anc
n converges ⇒ lim anc

n = 0

⇒ (anc
n) is bounded

⇒ ∃M > 0 s.t |ancn| ≤M ∀n ∈ N
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thus,

|anxn| = |an
(
c · x

c

)n
| = |ancn| ·

∣∣∣x
c

∣∣∣n ≤M · ∣∣∣x
c

∣∣∣n ∀n ∈ N

Note: |x| < |c| ⇒
∣∣x
c

∣∣ < 1

Apply comparison test

∞∑
n=0

M
∣∣∣x
c

∣∣∣n converges ⇒
∞∑
n=0

|anxn| converges

Corollary 0.1.23 Radius of convergence There exists R ≥ 0 such that

• |x| < R ⇒ PS converges at x

• |x| > R ⇒ PS diverges at x

R is called the radius of convergence

Methods for computing R from the an’s

Root test: if L = lim n
√
|an| exists, then R = 1/L

Ratio test: if L = lim
∣∣∣an+1

an

∣∣∣ exists, then R = 1/L

If L = 0 then R =∞, that is converges on entire real line.

Proof Root Test: lim n
√
|anxn| = L|x| ∀x ∈ R fixed

For all ε > 0 there exists N ∈ N s.t.

n ≥ N ⇒
∣∣∣ n
√
|anxn| − L|x|

∣∣∣ < ε

⇒ L|x| − ε < n
√
|anxn| < L|x|+ ε

⇒ (L|x| − ε)n < |anxn| < (L|x|+ ε)n

thus if |x| < 1/L, then pick ε < 1− L|x|
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Apply comparison test:

L|x|+ ε < 1 ⇒
∞∑
n=0

(L|x|+ ε)n converges

⇒
∞∑
n=0

|anxn| converges

⇒
∞∑
n=0

anx
n converges

instead, if |x| > 1/L then pick ε < L|x| − 1

L|x| − ε > 1 ⇒ (L|x| − ε)n unbounded

⇒ |anxn| unbounded

⇒
∞∑
n=0

anx
n diverges

So far we have discuss only pointwise converge of a power series. Hence, now
we will look at uniform convergence

Theorem 0.1.48 Uniform convergence

∞∑
n=0

|ancn| converges ⇒
∞∑
n=0

anx
n uniformly conv. on [−|c|, |c|]

Proof: for |x| ≤ |c| we have

|anxn| = |a| · |x|n ≤ |an| · |c|n = |ancn| =: Mn

Apply Weierstrass’test:

∞∑
n=0

Mn conv. ⇒
∞∑
n=0

anx
n unif. conv. on [−|c|, |c|]

Corollary 0.1.24 Continuity of the limit
∑∞
n=0 anx

n is continuous func-
tion on (−R,R)

Proof: take x0 ∈ (−R,R) and |x0| < c < d < R, then

PS convergent at d ⇒ PS absolutely convergent at c

⇒ PS uniformly convergent on [−c, c]
⇒ PS continuous on [−c, c] each anx

n is continuous

⇒ PS continuous at x0

Corollary 0.1.25

∞∑
n=0

|anRn| convergent ⇒
∞∑
n=0

anx
n uniformly conv. on [−R,R]

In particular, the PS is continuous on [−R,R]
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What if convergence is conditional at x = R or x = −R?

Lemma 0.1.2 Summation by parts if sn = u1 + · · ·+ un, then

n∑
k=1

ukvk = snvn+1 +

n∑
k=1

sk(vk − vk+1)

Proof: set s0 = 0, then

ukvk = (sk − sk−1)vk

= sk(vk − vk+1) + skvk+1 − sk−1vk ∀k = 1, ..., n

Lemma 0.1.3 Abel’s lemma assume that (un) and (vn) satisfy

• |u1 + · · ·+ un| ≤ C ∀n ∈ N

• 0 ≤ vn+1 ≤ vn ∀n ∈ N

Then ∣∣∣∣∣
n∑
k=1

ukvk

∣∣∣∣∣ ≤ Cv1
Proof: if sn = u1 + · · ·+ un, then∣∣∣∣∣

n∑
k=1

ukvk

∣∣∣∣∣ =

∣∣∣∣∣snvn+1 +

n∑
k=1

sk(vk − vk+1)

∣∣∣∣∣
≤ |sn|vn+1 +

n∑
k=1

|sk|(vk − vk+1)

≤ C

(
vn+1 +

n∑
k=1

(vk − vk+1)

)
= Cv1

Theorem 0.1.49 Abel’s theorem

(i). PS converges at x = R ⇒ PS conv. uniformly on [0, R]

(ii). PS converges at x = −R ⇒ PS conv. uniformly on [−R, 0]

Proof(1): for all ε > 0 there exists N ∈ N s.t

n > m ≥ N ⇒

∣∣∣∣∣
n∑

k=m+1

akR
k

∣∣∣∣∣ < ε

Take any x ∈ [0, R] and set

vk =
( x
R

)k
, uk =

{
akR

k if k ≥ m+ 1

0 Otherwise
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From Abel’s lemma we get the Cauchy criterion:∣∣∣∣∣
n∑

k=m+1

akx
k

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

ukvk

∣∣∣∣∣ < ε · x
R
≤ ε ∀x ∈ [0, R]

Theorem 0.1.50 Term-wise Differentiability Theorem

∞∑
n=0

anx
n conv. on (−R,R) ⇒

∞∑
n=0

nanx
n−1 conv. on (−R,R)

Proof: if |c| < 1, then there exists M > 0 s.t

|ncc−1| ≤M ∀n ∈ N

Let |x| < t < R, then

|nanxn−1| =
1

t

(
n
∣∣∣x
t

∣∣∣n−1) |antn| ≤ M

t
|antn|

Apply comparison test

Theorem 0.1.51 For any PS with radius R we have( ∞∑
n=0

anx
n

)′
=

∞∑
n=0

nanx
n−1 ∀x ∈ (−R,R)

Proof: let 0 ≤ c < R, then

•
∑∞
n=0 nanx

n−1 converges uniformly on [−c, c]

•
∑∞
n=0 anx

n converges at x = 0

Now apply Term-wise Differentiability Theorem

Taylor Series

Assume f is inf. often differentiable on interval around x = 0

Definition 0.1.26 The Taylor series of f around x = 0 is given by

∞∑
n=0

f (n)(0)

n!
xn

Definition 0.1.27

sn(x) =

n∑
k=0

f (k)(0)

k!
xk partial sum

En(x) = f(x)− sn(x) remainder
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Lemma 0.1.4 assume that

• x > 0 and h(t) is n+ 1 times diff.ble on [0, x]

• h(x) = 0 and h(k)(0) = 0 for all k = 0, ..., n

Then h(n+1)(c) = 0 for some c ∈ (0, x)

Proof: repeated application of Rolles’s theorem gives

h(0) = h(x) ⇒ h′(c1) = 0 for some c1 ∈ (0, x)

h′(0) = h′(c1) ⇒ h”(c2) = 0 for some c2 ∈ (0, c1)

...

h(n)(0) = h(n)(cn) ⇒ h(n+1)(cn+1) = 0 for some cn+1 ∈ (0, cn)

Theorem 0.1.52 Lagrange remainder For n ∈ N and x > 0 there exists
c ∈ (0, x) such that

En(x) =
f (n+1)(c)

(n+ 1)!
xn+1

if x < 0, then c ∈ (x, 0)

Note: c depends on both n and x

Proof: fix x > 0 and consider

h(t) = f(t)− sn(t)−
(
f(x)− sn(x)

xn+1

)
tn+1

Note that:

h(x) = 0 and h(k)(0) = 0, k = 0, ..., n

The lemma gives c ∈ (0, x) such that

f (n+1)(c)− s(n+1)
n (c)− (n+ 1)!

(
f(x)− sn(x)

xn+1

)
= 0

Rearraging gives

f(x)− sn(x) =
f (n+1)(c)

(n+ 1)!
xn+1
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Taylor series around different points

Assume f is inf. often diff.ble on interval around a

Definition 0.1.28 The Taylor series of f around x = a is given by

∞∑
n=0

f (n)(a)

n!
(x− a)n

Theorem 0.1.53 For x > a there exists c ∈ (a, x) such that

En(x) = f(x)− sn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

if x < a then c ∈ (x, a)

The Riemann Integral

The Fundamental Theorem of Calculus is a statement about the inverse relation-
ship between differentiation and integration. It comes in two parts, depending
on whether we are differentiating an integral or integrating a derivative. The
Fundamental Theorem of Calculus states that:

•
∫ b
a
F ′(x)dx = F (b)− F (a) and

• if G(x) =
∫ x
a
f(t)dt then G′(x) = f(x)

Nevertheless, for understand it completely we need first to define Partition,
Upper Sums, and Lower Sums:

Definition 0.1.29 Partitions A partitions of [a, b] is a set of the form

P = {a = x0 < x1 < x2 < · · · < xn = b}

Let f : [a, b]→ R be bounded and P be a partition of [a, b]

Definition 0.1.30 Lower sum Lower sum of f w.r.t P

mk = inf{f(x) : x ∈ [xk−1, xk]}

L(f, P ) =

n∑
k=1

mk(xk − xk−1)

Let f : [a, b]→ R be bounded and P be a partition of [a, b]

Definition 0.1.31 Upper sum Upper sum of f w.r.t P

Mk = sup{f(x) : x ∈ [xk−1, xk]}

U(f, P ) =

n∑
k=1

Mk(xk − xk−1)
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Note: For a particular partition P , it is clear that U(f, P ) ≥ L(f, P )

Definition 0.1.32 Refinements Q is called a refinement of P if P ⊂ Q.
Provided that P and Q are partitions of the same interval.

Lemma 0.1.5 If P ⊂ Q then

L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q)

Corollary 0.1.33 If P ⊂ Q then

U(f,Q)− L(f,Q) ≤ U(f, P )− L(f, P )

Proof (lower sum) Lemma 4.3.4: refine P by adding one point z ∈ [xk−1, xk]

mk = inf{f(x) : x ∈ [xk−1, xk]}
m′k = inf{f(x) : x ∈ [z, xk]}
m”k = inf{f(x) : x ∈ [xk−1, z]}

Remember that A ⊂ B then inf A ≥ inf B

mk(xk − xk−1) = mk(xk − z) +mk(z − xk−1)

≤ m′k(xk − z) +m”k(z − xk−1)

Then proceed by induction

Lemma 0.1.6 for two partitions P1 and P2 we have L(f, P1) ≤ U(f, P2)

Proof: let Q = P1 ∪ P2 then P1, P2 ⊂ Q so

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2)

Integrability

Assume f : [a, b]→ R is bounded

Let P denote the collection of all partitions of [a, b]

Definition 0.1.34 The upper integral of f is defined to be

U(f) = inf{U(f, P ) : P ∈ P}

The lower integral of f by

L(f) = sup{L(f, P ) : P ∈ P}

Lemma 0.1.7 For any bounded function f on [a, b], it is always the case that
U(f) ≥ L(f)
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Definition 0.1.35 A bounded function f : [a, b] → R is called Rimann inte-
grable if U(f) = L(f)

Notation: ∫ b

a

f = U(f) = L(f) or

∫ b

a

f(x)dx = U(f) = L(f)

Theorem 0.1.54 Criterion of integrability The following statements are
equivalent

(i). f is integrable

(ii). for all ε > 0 there exists a partition Pε such that

U(f, Pε)− L(f, Pε) < ε

Proof (2⇒ 1) :{
U(f) ≤ U(f, Pε)

L(f) ≥ L(f, Pε)
⇒ U(f)− L(f) ≤ U(f, Pε)− L(f, Pε) < ε

This holds for all ε > 0 so U(f) = L(f)

Proof (1⇒ 2): let ε > 0 and choose P1 and P2 such that

L(f, P1) > L(f)− 1

2
ε and U(f, P2) < U(f) +

1

2
ε

Let Pε = P1 ∪ P2 then

U(f, Pε)− L(f, Pε) ≤ U(f, P2)− L(f, P1)

= [U(f, P2)− U(f)] + [L(f)− L(f, P1)]

<
1

2
ε+

1

2
ε

= ε

Theorem 0.1.55 f continuous on [a, b] ⇒ f is integrable on [a, b]

Proof: f is uniformly continuous on [a, b]

For all ε > 0 there exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε

b− a
for all x, y ∈ [a, b]

Let P be a partition such that xk − xk−1 < δ for all k = 1, 2, ..., n

There exist yk, zk ∈ [xk−1, xk] such that

f(yk) = Mk and f(zk) = mk
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Note:

|yk − zk| < δ ⇒ Mk −mk = f(yk)− f(zk) <
ε

b− a

Thus

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)(xk − xk−1)

=
ε

b− a

n∑
k=1

(xk − xk−1)

=
ε

b− a
· (xn − x0)

=
ε

b− a
· (b− a) = ε

Example: any increasing function f : [a, b]→ R is integrable

For any partition of [a, b] we have

Mk = sup{f(x) : x ∈ [xk−1, xk}
= f(xk)

mk = inf{f(x) : x ∈ [xk−1, xk}
= f(xk−1)

An equispaced partition P gives

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)(xk − xk−1)

=
(b− a)

n

n∑
k=1

[f(xk)− f(xk−1]

=
(b− a)(f(b)− f(a)

n
→ 0 as n→∞

Properties of integrals

Theorem 0.1.56 Split property Let f : [a, b]→ R be bounded and c ∈ (a, b),
then

f integrable on [a, b] ⇔ f integrable on [a, c] and [c, b]

In that case ∫ b

a

f =

∫ c

a

f +

∫ b

c

f
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Proof (⇒): Let ε > 0 and pick a partition P of [a, b] s.t.

U(f, P )− L(f, P ) < ε

Let Pc = P ∪ {c} then
U(f, Pc)− L(f, Pc) < ε

Then Q = Pc ∩ [a, c] is a partition of [a, c] and

m := # intervals in Q
n := # intervals in Pc

}
⇒ m < n

m < n implies

U(f,Q)− L(f,Q) =
m∑
k=1

(Mk −mk)(xk − xk−1)

≤
n∑
k=1

(Mk −mk)(xk − xk−1)

= U(f, Pc)− L(f, Pc)

< ε

Conclusion: f is integrable on [a, c]. The proof for [c, b] is similar. Proof (⇐):
Let P1 and P2 be partitions of [a, c] and [c, b] s.t

U(f, Pi)− L(f, Pi) <
1

2
ε, i = 1, 2

Then P = P1 ∪ P2 is a partition of [a, b] and

U(f, P ) = U(f, P1) + U(f, P2)

L(f, P ) = L(f, P1) + L(f, P2)

U(f, P )− L(f, P ) <
1

2
ε+

1

2
ε = ε

Conclusion: f is integrable on [a, b]

Let ε and P1 and P2 be as before∫ b

a

f ≤ U(f, P )

< L(f, P ) + ε

= L(f, P1) + L(f, P2) + ε

≤
∫ c

a

f +

∫ b

c

f + ε

∫ b

a

f ≤
∫ c

a

f +

∫ b

c

f
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Let ε and P1 and P2 be as before∫ c

a

f +

∫ b

c

f ≤ U(f, P1) + U(f, P2)

< L(f, P1) + L(f, P2) + ε

= L(f, P ) + ε

≤
∫ b

a

f + ε

∫ c

a

f +

∫ b

c

f ≤
∫ b

a

f

And we have done.

Definition 0.1.36 if f is integrable on [a.b] then∫ b

a

f = −
∫ a

b

f and

∫ c

c

f = 0 for all c ∈ R

Theorem 0.1.57 if f, g are integrable on [a, b] then

• f + g integrable and
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g

• kf integrable and
∫ b
a
kf = k

∫ b
a
f for all k ∈ R

Theorem 0.1.58 If f is integrable on [a, b] then

m ≤ f(x) ≤M ⇒ m(b− a) ≤
∫ b

a

f ≤M(b− a)

Proof: for all partitions P of [a, b]

L(f, P ) ≤
∫ b

a

f ≤ U(f, P )

Taking P = {a, b} gives

U(f, P ) = (b− a) · sup{f(x) : x ∈ [a, b]} ≤M(b− a)

L(f, P ) = (b− a) · inf{f(x) : x ∈ [a, b]} ≥ m(b− a)

Theorem 0.1.59 if f, g are integrable on [a, b] then

f(x) ≤ g(x) for all x ∈ [a, b]⇒
∫ b

a

f ≤
∫ b

a

g

Proof: since 0 ≤ g(x)− f(x) for all x ∈ [a, b] we have

0 · (b− a) ≤
∫ b

a

(g − f)⇒ 0 ≤
∫ b

a

g −
∫ b

a

f
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Theorem 0.1.60 If f is integrable on [a, b] then |f | is integrable and∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

Proof: Let P be any partition of [a, b] and

Mk = sup{f(x) : x ∈ [xk−1, xk]}
mk = inf{f(x) : x ∈ [xk−1, xk]}
M ′k = sup{|f(x)| : x ∈ [xk−1, xk]}
m′k = inf{|f(x)| : x ∈ [xk−1, xk]}

claim: M ′k −m′k ≤Mk −mk

For all ε > 0 there exist y, z ∈ [xk−1, xk] s.t

M ′k −
1

2
ε < |f(y)|

m′k +
1

2
ε > |f(z)|

M ′k −m′k − ε < |f(y)| − |f(z)|
≤ |f(y)− f(z)|
≤Mk −mk

M ′k −m′k ≤Mk −mk

Let P any partition of [a, b] then

U(|f |, P )− L(|f |, P ) =
n∑
k=1

(M ′k −m′k)(xk − xk−1)

≤
n∑
k=1

(Mk −mk)(xk − xk−1)

= U(f, P )− L(f, P )

Thus,

−|f(x)| ≤ f(x) ≤ |f(x)| ⇒ −
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |

⇒

∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |
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The fundamental theorem of calculus

Theorem 0.1.61 FTC part 1 assume that

(i). f is integrable on [a, b]

(ii). F is differentiable on [a, b] and

F ′(x) = f(x) ∀x ∈ [a, b]

Then ∫ b

a

f = F (b)− F (a)

Proof: let P be any partition of [a, b]

F (b)− F (a) =

n∑
k=1

[F (xk)− F (xk−1))

By the MVT =

n∑
k=1

f(tk)(xk − xk−1) tk ∈ (xk−1, xk)

≤
n∑
k=1

Mk(xk − xk−1)

= U(f, P )

≥ L(f, P )

let P be any partition of [a, b], then

L(f, P ) ≤ F (b)− F (a) ≤ U(f, P )

Taking sup/inf over all partitions gives

L(f) ≤ F (b)− F (a) ≤ U(f)

Since f is integrable it follows that

L(f) = U(f) = F (b)− F (a)

Theorem 0.1.62 FTC part 2 let f be integrable on [a, b] and define

F (x) =

∫ x

a

f(t)dt where x ∈ [a, b]

Then

(i). F is uniformly continuous on [a, b]

(ii). if f is continuous at c, then F is differentiable at c and

F ′(c) = f(c)
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Proof(1) since f is integrable on [a, b] there exists M > 0 s.t.

|f(x)| ≤M ∀x ∈ [a, b]

If x, y ∈ [a, b] with x ≥ y, then

|F (x)− F (y)| =
∣∣∣∣∫ x

y

f(t)dt

∣∣∣∣
≤
∫ x

y

|f(t)|dt

≤M |x− y|

For given ε > 0 take δ = ε/M .

Proof(2): for x 6= c we have

F (x)− F (c)

x− c
− f(c) =

1

x− c

∫ x

c

f(t)dt− f(c)

=
1

x− c

∫ x

c

f(t)− f(c)dt

Let ε > 0 be arbitrary and pick δ > 0 s.t

|x− c| < δ ⇒ |f(x)− f(c)| < ε

Since |t− c| ≤ |x− c| < δ it follows that∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ =
1

|x− c|

∣∣∣∣∫ x

c

f(t)− f(c)dt

∣∣∣∣
≤ 1

|x− c|
· |x− c| · ε

= ε
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