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The Real Numbers
The Irrationality of /2

Theorem 0.0.1 The is no rational number whose square is 2
Proof:assume /2 = p/q for some p, q € Z with ged(p,q) =1

= p? = 242
= p? is even, so p itself is even, say p = 2k
= 4k? = 2¢% so 2k* = ¢

= ¢? is even, which bring a contradiction becuase we assumed that ged(p, q) = 1

Some Preliminaries

Definition 0.0.1 (set) A set is any collection of objects. These objects are
referred to as elements of the set

Set-Theoretic Notation:
e AUB: A union B
e AN B: A intersect B
o A% {x € Q:x ¢ A} = complement of A
e w € Q: w is an element of §2;
e ACQ: A is an subset of €

e B D A: B contains A (its the same of the previous);

The set 0 is called empty set
o U, nAn=A1UAy---

Theorem 0.0.2 (De Morgan’s Laws) Let A and B be subsets of R, then:
(AN B)¢ = AU B° and (AU B)¢ = A°N B¢
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Proof: We begin by showing that (AN B)¢ C A°U B°.

Suppose z € (AN B)¢, which means that « & (AN B). Therefore, x ¢ AU B,
which means that € A°U B°. Hence, (AN B)¢ C A°U B°.

Our proof is now halfway done. To complete it we show the opposite subset
inclusion. First we begin with an element x in the set A°U B¢, which means
that x is an element of A° or that x is an element of B¢. Thus z is not an
element of a least one of the sets A or B. So, £ cannot be an element of both A
and B. This means that « is an element of (AN B)°. Therefore, we have proved
the law.

Definition 0.0.2 (Function) Given two sets A, B, a function from A to B is
a rule or mapping that takes each element x € A and associates with it a single
element of B. In this case, we write f : A — B. Given an element x € A, the
expression f(x) is used to represent the element of B associated with x by f.
The set A is called the domain of f. The range of f is not necessarily equal to
B but refers to the subsets of B given by {y € B : y = f(x) for some x € A}.
That is, the set of all f-images of all the elements of A is known as the range
of f. Thus, range of f is denoted by f(A). B is the co-domain.

This definition of function is more or less the one proposed by Peter Lejeune
Dirichlet (1805-1859) in the 1830s.

Absolute Value
Definition 0.0.3 (Absolute Value)

2] T ife>0
€Tr =
—x ifr <0
Lemma 0.0.1 |z| =maz{z, —z}
Proof:
First case:

z>0=—-2<0
= —x<x

= maz{—z,x} =z = |z|
Second case:

r<0=—-x2>0
= —Tr >

= max{—z,x} = —x = |z|
Definition 0.0.4 (Product rule)

|lzy| = |« - ||
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Proof:
e If £ >0,y > 0, then by def. |xy| = zy and by def. xy = |x||y|;
e if x =0,y =0 it is obvious that is true: 0 =0 ;

e If z < 0,y > 0, then |zy| = (—z)y which by def. (—z) = |z[,y = |z],
therefore (—z)y = |z||y|;

If x > 0,y > 0 same way of the previus;

If 2 <0,y <0, then |zy| = (—2)(—y) = |=[|y|

Definition 0.0.5 (quotient rule)

where y # 0
Proof:
° if:c:O,y>0,then‘%’:9:O;
e same for z = 0,y < 0;

e £ <0,y >0, then

z| _ -z lz|.
£| = =2 by def. = 121;

e the same logic for x < 0,y <0 and z > 0,y <0

Inequalities

Lemma 0.0.2
2| <ae —a<z<a

Proof:

|z] < a= mazr{-z,2} <a
= -—zz<axrx<a
=—-a<z<a

Theorem 0.0.3 (Triangle inequality)
v +yl < [z + |y
Proof:

o if x +y >0, then |z + y| =2+ y < |2| + y by lemma 1.2.1, which is the
same for y < |y| therefore |z + y| < |z| + |y|;

o if t+y <0, then [z +y| = —z —y < |z|+ |y| by lemma 1.2.1
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Hence, |2 +y| = maz{z +y, —z -y} < |z + [y| = o +y| < [z] + |y
Theorem 0.0.4 (Reverse triangle inequalities)
llz] + [yl < |z —yl
Proof:
o |z| =z +y—y| <|r—y|+ |yl by theorem 1.2.2;
o |z| — |y| < |x — y| which is the same as |y| — |z| < |y — z| = |z — y|;
o maz{|z| — |y|, [yl — [z} = [|=] + [y|| < |z =y

Theorem 0.0.5 Two real numbers a,b are equals if and only if for every real
number € > 0 it follows that |a —b| < ¢

Induction

Induction is used in conjunction with the natural numbers N. The fundamental
principle behind induction is that if S is some subset of N with the property
that

(i). S contains 1 and
(ii). whenever S contains a natural number n, it also contains n + 1,

then it must be that S = N.
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The Axiom of Completeness

Definition 0.0.6 A set A C R is bounded above if there exist a number b € R
such that a < b for all a € A. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound I € R
satisfying | < a for every a € A

Definition 0.0.7 (least upper bound) s € R is called the least upper bound
of A C R if it meets the following two criteria:

(i). s is an upper bound for A;
(ii). if b is any upper bound for A, then s <b

The least upper bound is also frequently called the supremum of the set A: s =
supA

Lemma 0.0.3 if s is an upper bound for A then
s=supA & Ve>03Ja€ Ast s—e<a

Proof:
(1)Let € > 0, then

s — €< §= s — € is not an upper bound for A
=>Jdac€Ast. s—e<a

(2)Let b be any upper bound for A

ifb<s=¢e¢=s5—0bthereexist a € A s.t
=>b=s—€e<s

This bring a contradiction. Hence, s < b, which means that s = supA

Definition 0.0.8 (greatest lower bound) i € R is called the greatest lower
bound of A C R if

(i). i is a lower bound for A
(ii). if l is any lower bound for A thenl <i
Notation:i =infA (infimum)
Lemma 0.0.4 ifi is a lower bound for A then
i=infAeVe>03da€ Ast a<i+e

Proof:
(1)Let e >0

1 <1+ €= 1+ e cannot be a lower bound for A

=dacAsta<i+te
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(2)Let I be any lower bound for A
ifi<l=e=1—i
=da€Ast.l=ec+i>a
This is a contradiction, therefore [ < ¢, which means that ¢ = infA

Axiom of Completeness (AoC) 1 every nonempty subset of R that is bounded
above has a least upper bound

Consequences of completeness

Theorem 0.0.6 (The Archimedean property) Theorem:
(i) Ve eRIneNst. n >z

(i) Yy >03IneNstl/n<y

Proof:(1) We prove the theorem by contradiction. If (1) is not true, then N is
bounded above.

e AoC= a = supN exists.
e o — 1 is not an upper bound for N.
e There exist n € N such that « — 1 < n by lemma 1.3.1=a<n+1

e n+ 1€ N= «is not an upper bound for N. Contradiction!

e AoC= a=1infN

e o+ 1 is not an lower bound for N

e There exist n € N such that n < o+ 1 by lemma 1.3.2

e n—1 < a, which means that « is not a lower bound for N. Contradiction!

But there is another way to prove part (2), and it’s using (i):
Let y > 0 be arbitrary and set x = 1/y. By (i) there exist n € N such that
n > x. Therefore 1/y <n=1/n<y

Theorem 0.0.7 (Nested Interval Property) For each n € N, assume we
are given a closed interval I, = [an,b,] = {z € R:a, <z < b,}. Assume
also that each I, contains I,4+1. Then, the resulting nested sequence of closed
intervals

L2232

has a non-empty intersection; that s,
(oo}
ﬂ I,#0
n=1
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Proof:Define A = {a,, : n € N}

[ [ [ [ 1 1 1 1
T T T T T T T

7
ay as az v Ap - ceo by cee by by by

e Every b, is an upper bound for A

e AoC= x = supA = x < b, by def. 1.3.2
e moreover, a, < T

e Therefore, a, < x <b,

Remark! The NIP requires the intervals to be closed!

The rational number are dense in R
Theorem 0.0.8
Va,be R witha<bIreQ sta<r<b
Proof:Only case 0 < a < b:
e AP= there exist n,m € N such that 1/n < b—a and na <m

e we can choose this an small enough to be sandwich by m,m—1=m—1 <
na <m

em<na+l<nb—2L)+1=nb
e hence, m < nb and na < m which means that a < % <b

Corollary 0.0.9 (Density of in R) Given two real numbers a < b, there ex-
ists an irrational number satisfying a <t <b

Existence of square roots

Theorem 0.0.9 Ja € R s.t. a2 =2

Cardinality

The term cardinality is used in mathematics to refer to the size of a set.

1-1 Correspondence

Definition 0.0.10 (A one-to-one or injective, surjective, bijective functions)
A function f: A — B is

e one-to-one (1-1) if a3 = as in A implies that f(a1) = f(asz) in B.
e onto or surjective if, given any b € B, it is possible to find an element

a € A for which f(a) =b.
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e Dbijective if f is both injective and surjective

Definition 0.0.11 Two sets A, B have the same cardinality if there exists a
bijective function f: A — B
Notation: A~ B

Theorem 0.0.10 ~ is an equivalence relation:
(i). A~ A

(ii)). A~B< B~ A

(iti)). A~Band B~C=A~C

Countable sets
Definition 0.0.12 A set A is called

e countable if A ~ S for some S C N

e uncountable otherwise
Lemma 0.0.5 A countable < 3f : A — N injective
Lemma 0.0.6 A countable < g : N — A surjective
Corollary 0.0.13

B countable

[+ A— B injective } = A countable

A countable

g:A— B surjective } = B countable

Theorem 0.0.11 two parts:
(i). The set Q is countable
(i1). the set R is uncountable

Proof(ii): Assume R is countable.
If g : N — R is surjective, then

R ={z1,22,23,24,...} where xz,=g(n)

To show: dx € Rs.t x #x, Vn € N
Choose closed and bounded intervals as follows:

l1 such that =z €14
lo Cly such that =5 €15
13 g ZQ such that T3 ¢ lg

NIP = 3z € Rs.t. x € N9 1,. But = # 2, for all n € N because z,, € I,,.
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Corollary 0.0.14 Q¢ =R\Q

Proof: We know that Q is countable
Q¢ countable = R = Q U Q¢ countable. Contradiction! That is, there are
”more” irrationals than rationals

Theorem 0.0.12 If A C B and B is countable, then A is either countable or
finite

Theorem 0.0.13 two parts:

(i). if Ay, Aa, ..., Ay, are each countable sets, then the union AyUA3U---UA,,
countable

(ii). If A, is countable set for each n € N, then |J. -, A, is countable

Cantor’s Theorem

Cantor published his discovery that R is uncountable in 1874.

Theorem 0.0.14 The open interval (0,1) = {x € R: 0 < & < 1} is uncount-
able

Proof: take any g : N — (0,1), then

g(1) = 0.d11d12d13d14 - - -
9(2) = 0.da1daadasday - - -
9(3) = 0.d31ds2dssdsy - - -

Define ¢ € (0,1) by

2 ifdy, #2

t =0.cicoc3cs -+ Ccpp =
1t {3 i dypy = 2

Then t # g(n) for all n € N so g is not surjective
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Sequences and Series

The limit of a Sequence

Definition 0.0.15 A sequence is a function whose domain is N
Definition 0.0.16 (Convergence of a Sequence) a,, converges to a if
YVe>0 INeN st. n>N = |a,—a|<e
Notation: a =lima, or (a,) — a
Definition 0.0.17 (neighborhood) Fora € R and € > 0 the set
Vi(@) ={z eR: |z —a| <€}
1s called the e-neighborhood of a

Definition 0.0.18 (Convergence of a sequence: topological version) A se-
quence (ay,) converges to a if, given any e-neighborhood Vc(a) of a, there exist a
point in the sequence after which all of the terms are in V.(a). In other words,
every e-neighborhood contains all but a finite number of the terms of a,:

Ve>03INeNst n>N = a, € V(a)

V., (a)
e—e—

ayN

'
- L ooommes )

Moral: the tail of the sequence gets trapped in V¢ (a)

Theorem 0.0.15 (Uniqueness of Limits) The limit of a sequence, when it
exists, must be unique

Standard limits
o im1/n®=0 (a>0)
e limc"=0 (-1<e<1)
o limc"n*=0 (-1<c<l,a€eR)
e lim/c=1 (c>0)
o lim {/n=1
e limn!/n" =0

Definition 0.0.19 (divergent sequence) A sequence that does not converge
1s called divergent
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For understand what does it mean we need to obtain a Logical negation from
the definition of convergence.
Logical negation:

Je>0stVN e€Nst. |a, —al > ¢
Definition 0.0.20 (a,) is bounded if
IM >0 st Ja,|<M VneN
Theorem 0.0.16 if (a,) is convergent = (a,) is bounded
Proof: let a = lim a,,, then for e = 1 there exist N € N such that
n>N=la, —al| <1

= [lan| —lal| <1

= lay| —|a] < 1

= lap| <1+ |a
For M = max{|a1|, |az],|as], ..., |an—1|,1 + |a|} we have

lan| <M V¥neN
Warning: the converse is not true!
NOTE:Theorem can be used to prove that a sequence diverges
0.1 Algebraic properties
Theorem 0.1.1 if a = lima, and b =limb,, then
(i). lim(ca,) = ca where c € R
(i1). lim(a, +b,) =a+b
(iti). lim(anby,) = ab
(iv). lim(a, /by) = a/b if b#0
Proof (ii):
[(an +bn) = (a+b)| = |(an — a) + (b — D)
< lan —a| + b, — b

Let € > 0 be arbitrary, then
1
dN;eN st n>Ny =la,—al < ¢

1
dNy €N s.t. n>N; :>|an—a\<§6
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Define N = maxz{Ny, Na} then
1 1
n>N = |(ap, —by) —(a+b)| < 56—'—56:6
Proof (iii):

|anby, — ab| = |anby, — aby, + ab, — abl
= |bp(an, — a) + a(b, — b)|
< |bn(an — a)| + |a(b, — b)|
= |bnllan — al + |af|bn — 0]
< Mla, — a| + |a||bn, — b (bn)is convergent and therefore bounded

Let € > 0 be arbitrary, then

aN L. >N n — —
1€N st. n>Ny =a a|<2Me
1
a

Define N = max{Ny, Na} then

1
n>N = Jab,—abl< —e+ ——e=¢
a

Order properties

Theorem 0.1.2 (order limit theorem) iflima, = a and limb, = b then
(i). a, >0 YneN =a>0

(ii). ap, <b, YneN =a<b

(iii). c<b, VneN =c<b

(v). a, <c VYneN =a<c

Proof (i): assume that a < 0
For € = |a| there exist N € N such that

n>N =a,—a|l<e
= —€e<a,—a<e
>a—€e<ap,<a-+e€
=a, <a+la=0

Contradiction!

Note: Loosely speaking, limits and their properties do not depend at all on
what happens at the beginning of the sequence but are strictly determined by

/faculty of Science and Engineering 12



University of Groningen Analysis/Zambelli Lorenzo

what happens when n gets large. In the language of analysis, when a property is
not necessarily possessed by some finite number of initial terms but is possessed
by all terms in the sequence after some point N, we say that the sequence
eventually has this property.

Theorem 0.1.3 (Squeeze theorem) If z, <y, < z, for alln € N, and if
limz,, =limz, =1, then limy, =1 as well.

Proof: Given € > 0, there exists N1, Ny € N such that whenever n > Ny, n > No,
|z, — 1] < €eand |z, — 1] <e

Choose N = maxz{N1, Na} then we get whenever n > N, |z, —1| < ¢, |z, —1| < e.
This gives

—e<xp—I<y,—1<z,—1<e
—e<yp—l<e=|y,—1| <e
or
If y = limy, then by thm v, < 2z, = y <[ and z, <y, = [ < y. Therefore,
I <y <I. Hence, y =1.
The monotone convergence theorem and infinite series
Definition 0.1.1 (a,) is called monotone if is either
e increasing: an < ant1 Vn € N

e decreasing: an4+1 < an Yn €N

Theorem 0.1.4 (Monotone converges theorem (MCT)) (a,) bounded &
monotone = (ay) converges. a = lima,, erist

Proof: A ={a, : n € N} is bounded Strategy of proof:
e q, increasing = lima,, = supA
e a, decreasing = lima, =infA

Assume that (a,) increases

Let s = sup{a, : n € N}

Let € > 0 be arbitrary, then s — € is not an upper bound. Therefore, there
exists N € Ns.t. s —e < ap.
For n > N we have

s—e<any<ap<s<s+e =la,—s|<e

Assume that (a,) decreses
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Let i = inf{a, : n € N}

Let € > 0 and arbitrary, then ¢ + ¢ is not an lower bound. Therefore, there
exist N e Nstay <i+e.
For n > N we have

ite>an>a,>i>i—€¢ =la, —i|<e

Subsequences
Definition 0.1.2 pick n; € N such that

1<ni<ng<ng<---
If (ay) is a sequence then

(any,) = (Qnys Gnys Gng,...)
is called a subsequence of (ay). Note: ny >k since k € N
Theorem 0.1.5 lima, =a = lima,, =a
Proof: let € > 0 be arbitrary, then

ANeN st n>N=|a, —a|<e€
k>N=mn,>N
= |ap, —a| <e

Theorem 0.1.6 (Bolzano-Weierstrass theorem) Every bounded sequence has
a convergent subsequence.

Proof: There exists M > 0 such that a,, € [-M, M] for all n

I,

-M T 0 M

Bisect the closed interval [—M, M] into two closed intervals [—M, 0], [0, M].
Halving-process gives nested closed intervals

I DI, DI3D---

NIP = there exists z € (), I,

each I contains infinitely many terms of the seq.

e pick ny € N with a,, € I1
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e pick ny € N with ng > n; and a,, € Iy

e pick ng € N with ng > n; and a,, € I3

Note that

x el

2M
Qn, e I }:>|a”kx§l6ngth(fk)2k4>0

Infinitely series 1

Definition 0.1.3
e Infinite series:

Zak:a1+a2—|—a3+---
k=1

e n-th partial sum:
Sp=a1+az+ -+ ap

e iflims, = s, then we say the series converges to s

Theorem 0.1.7 (Euler’s famous example)

=1
E 5 Cconverges

2
k:lk
Proof:
1+1+1+ + !
Sp = — — _
4 9 n?
Sp < Sp41 VneN
Sp < 2

MCT = lim s,, exists

This because

s —1+i+i+i+ +L
L 2.2 3.3 4-4 n-n
<1+121+4i—+$L+- +——i——
3-2 4.3 n-(n—1)
PP A WS U L U6 N W A S|
o 2 2 3 3 4 n—1 n
1
=141-——
n

<2
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Remark: since s, < 2 for all n the order limit theorem implies

=1
Zﬁ =lims, <2
k=1

Euler proved in 1734 that in fact

2

26
=k 6
Theorem 0.1.8 (harmonic seires)
— 1
= di
Z  diverges

k

1

The integral test for convergence

Theorem 0.1.9 assume that f: [1,00] = R is
(). positive

(i1). continuous

(iii). monotonically decreasing

Let a, = f(k) then
oo o0
Zak converges < / flz)dr < o0
k=1 !

The Cauchy Criterion
Definition 0.1.4 (Cauchy sequence) (a,) is a Cauchy sequence if

YVe>0 INeN st nm>N=la, —an| <e€
Meaning: the terms get close to each other
Theorem 0.1.10 (a,) convergent = (a,) Cauchy

Proof: assume a = lim a,,
For all € > 0 there exists N € N such that

1
n>N :>|an—a|<§e

m,n>N = lay, — an| = |(an —a) — (an, — a)|
§|an*a|+|amia|
<e
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Lemma 0.1.1 (a,) Cauchy = (a,) bounded

Proof: for e =1 there exists N € N such that

nm>N —la, —an| <1

n>N =la,—an| <1
= |lan| — lan|l <1

= |an| — lan| < 1

= |an| <14 |an]

For M = max{|a1|,|az|, ...,|an—1],1+ |an|} we have
lan| <M forallneN

Theorem 0.1.11 (Cauchy Criterion) (a,) Cauchy = (a,) convergent

Proof:

Lemma = (ay,) is bounded

For weistrass-bolzano = (a,) has a convergent subsequence (ay, ) a = limay,,
For all € > 0 there exists NV € N s.t

1
n,m>N  =la, —anl < €
Fix an index nj, > N such that |a,, —a| < 3¢, then

n>N =>‘(1n—ll|:|an_ank+ank_a|
<lan — an,| + |an, — al
<€

Infinite Series Properties

Theorem 0.1.12 (Algebraic Limit Theorem for series) if Y ;- a, = A
and Y 72, by, = B then

(i). S cap =cA forallc € R
(i1). Z;;(ak +b)=A+B

Theorem 0.1.13 (Cauchy Criterion) the following statements are equiva-
lent

(i). Y peq ai converges

(7). for all € > 0 there exists N € N s.t.

n>m>N = |ani1+ Gy + - Fap| <e
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Proof: note that
|Sn - Sm| = |am+1 + - +an|

Statement 1 < (s,) converges < (s,) Cauchy < Statement 2

Theorem 0.1.14 220:1 ay, converges = limay = 0

Proof: let € > 0 be arbitrary
There exists N € N such that

n>m>N = |ami1+ Gmiz+ - Fan| <e

n=m+land m>N = |ani1|<e

Warning: the converse is NOT true!

Note: the previous theorem also gives a test for divergence

Theorem 0.1.15 (Comparison test) if 0 < ay < by for all k € N, then

(i). oo, by converges = Y 7° | aj converges
(ii). >, ai diverges = >, by, diverges

Proof:

|@m+1 + Gmao + -+ anl = @ms1 + @iz + -+ an
Sbm+1+bm+2+"'+bn
:|bm+1+bm+2++bn‘

Apply the Cauchy criterion for series.

Note: this theorem does not be true for all k, but its sufficient that is true for

a k sufficiently large

Theorem 0.1.16 (Alternating series test) assume
(i). 0 < aps1 <ay forallk e N

(i). limay =0

k+1

then the alternating series >, (—1)**1ay, converges

Proof: consider the partial sums

Sp=a1 —ag +az— -+ (=1)"Ta,

the partial sums form nested intervals:

I, = [3277,75277,71] =0L2I1,2I3D---

NIP = there exists s € N such that s € I,, for all n € N
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Let € > 0 be arbitrary
Choose N € N such that asy < €, then

n>2N = s,s, € Iy = [san, San—1
= |5 —sp| < san—1 — s2n
= |s — su| < asn
= |s—sp| <e

Theorem 0.1.17 (Absolute vs. conditional convergence) >/~ |ax| con-
verges =y po, aj converges

Proof: note that
0<a,+ |ak| < 2|a;€\ for all k € N

Comparison Test = >~ (ax + |ax|) converges
Apply Algebraic Limit Theorem:

o0 o0 o
Z ay = Z(ak + |ak]) — Z lax| converges
k=1 =1 k=1
Definition 0.1.5 Y77, ay, is called
(i). absolutely convergent if ;- | |ai| converges
(ii). conditionally convergent if it converges but >, |ai| diverges
Definition 0.1.6 (geometric series) a geometric series is of the form

oo

k _ 2 3
Zar =a+ar+ar®+ar’+---
k=0

> a
g ar® =

1—r
k=0

If and only if |r] < 1

Definition 0.1.7 telescoping series are the form

[e¢]

Z ay = Z(bk — bi+1)
=1

k=1

Successive terms cancel each other:

Spn=a1+taz+az+- - +ay
= (b1 —b2) + (bo — b3) + (b3 — ba) + -+ - + (bp, — bny1
:bl_bn+1

The series converges < (b,) converges
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Basic Topology of R

Interval
Definition 0.1.8 Closed interval (endpoints included):
[a,b] ={x eR:a <z <b}
Definition 0.1.9 Open interval (endpoints not included):
(a,0) ={z eR:a<z<b}
Definition 0.1.10 O C R is open if
YaeO Je>0 st Vi(a)CO
Note: the empty set () is open by definition
Theorem 0.1.18

(i). Unions of arbitrary collections of open sets are open

(ii). Intersections of finite collections of open sets are open

Proof(i): let O = J;c; O; with each O; open
x €0 =2x¢€0, for somei el
There exists € > 0 such that V. (z) C O; C O

Proof(ii): let O = 01 NO2N---N O, with each O; open
re€0=xe€0;foralli=1,...,n

Foralli = 1,...,n there exists ¢; > 0 such that V;,(z) C O; For e = min{ey, ..., 5}
we have V. (z) C O; foralli=1,...,n

Warning: the intersection of infinitely many open sets need not be open!

Definition 0.1.11 (limit point) z is a limit point of A C R if Ve > 0 V(x)
intersects A in some point other than x

Note: Limit points of A may or may not belong to A

Theorem 0.1.19 The following statements are equivalent:
(i). = is a limit point of A

(i1). There exists a sequence a, in A such that

an#x VYn €N and z=Ilima,
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Proof (i,i1): let n € N and set e = 1/n
There exists a,, € Ve(z) N A with a,, # z

Note that |a, — x| <e=1
Proof (ii,i): for all € > 0 there exists N € N such that

n>N=la, —x| <e

In particular, ay € Vi(z)
By assumption ay # = and ay € A

Definition 0.1.12 (Closed set) A set is closed if it contains its limit points

Theorem 0.1.20 the following statements are equivalent
(i). F is closed
(ii). Every Cauchy sequence in F' has its limit in F
Proof (i,i1): Let (a,) C F be Cauchy
r = lim a,, exists; now consider two cases:
e r #a, for all n € N= x is a limit point of F = x € F

e r = a, for some n € N= z € F holds trivally

Proof(ii,i): let x be a limit point of F
x = lima, with a, € F and a,, # = for all n € N
(an) is convergent = (a,,) Cauchy = = € F by assumption
Definition 0.1.13 (Closure) the closure of A is defined as
A = AU {all limit points of A}

Theorem 0.1.21 A is closed
Proof: show that x limit point of A < z limit point of A
A= AUL with L = {limit points of A}
x limit point of A =Ve >0 Iy eV (r)NA y#x
Note: either y € Aory € L

(i). y € A=z is a limit point of A

(i) ye L=V6>0 FzeVs(y)NA z#y
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Note: Vs(y) C Ve(z)\{z} for 6 small enough

Therefore x is a limit point of A
Theorem 0.1.22 (complements)
(i). O open < O° closed
(ii). F' closed < F¢ open
Warning: sets are not likes doors!
e (0,1] and Q are neither open nor closed
e R and @ are both open and closed

Practical consequence: it is impossible to prove openness/ closedness by
contradiction

Theorem 0.1.23 (unions and intersections)
(i). Unions of finite collections of closed sets are closed

(ii). Intersections of arbitrary collections of closed sets are closed
Proof(i):
Fy, ..., F, closed = FY, ..., F; open

= FiN---NFE; open

= (FfN---NF5)° closed

= F,U---UF, closed
Proof (ii):

F; closed for all ¢ € I = F; open for all i € I

= U Ff open
i€l

= (U Ff)¢ closed
i€l

= U F; closed
i€l

The last passage of both proof we have used De Morgan’s laws, which state that
for any collection of sets {E; : i € I'}

(Us) ~ne wa (N5) -y

i€l iel iel iel

Warning: the union of infinitely many closed sets need not be closed

/faculty of Science and Engineering 22



University of Groningen Analysis/Zambelli Lorenzo

Compact sets

Definition 0.1.14 (sequential definition) K C R is compact if every se-
quence in K has a convergent subq. with a limit in K

Theorem 0.1.24 K C R compact < K closed and bounded

Proof(=): Assume K is not bounded. There exists (z,) C K with |z,| > n for
all n € N.

(z,,) has no convergent subsequence. Contradiction!
Let z be a limit point of K. There exists (z,) C K such that x = limz,,.

K compact = there exists a subsequence (z,,) — y € K. (x,,) — z as
well >z =yec K

Proof(<): let (z,,) C K. K is bounded = (z,,) is bounded.

B-W Theorem = (x,,) has a convergent subsequence. Let 2 = lim z,,,. Hence,
K is closed = z € K

Theorem 0.1.25 (Generalization of the NIP) assume that K,, # () is com-
pact for alln € N and
KiDKy; 2D K32

Then (N, —, Ky, is nonempty

Open covers

Definition 0.1.15 Let A C R and assume that the sets O; C R where i € I,
are open. We call the sets O; an open cover for A if

Ac o

el
Theorem 0.1.26 K compact < any open cover for K has a finite subcover
Proof(=):
Let O;,7 € I, be an open cover for K without finite subcover.

Take a bounded, closed interval J; D K

Halving process: construct .J,, be closed intervals s.t.
e J1DJoDJ3D -

e K NJ, can not be coverd by finitely many O;’s
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K N J, compact for all n € N= (", (K N.J,) # 0.

There exists x € K such that x € J,, for all n

x € O; for some i € I and let € > 0 such that V.(z) C O;
There exists N € N such that length(Jy)< €

Hence, KN Jy C Jy C Vc(z) C O;. Contradiction!
Proof(<):

O, = (—n,n),n € N, is an open cover for K.

K CcO;UO3U---UOpN = (—N, N) for some N € N. Therefore, K is bounded.
Let y be a limit point K

There exists (y,) C K with y = limy,,. Assume y € K

Let z € K and O, = V.(z) with e = 1|z — y

The sets, O,, where x € K, form an open cover for K
There exist z1,...,x, € K such that K C Oy, U---UO,,
Pick N € N such that [yy — y| < min{i|z; —y| :i=1,...,n}

Hence, yn & Oy, U ---U O, Contradiction!

Theorem 0.1.27 (Heine-Borel) Let K C R, the following statements are
equivalent:

(i). K is compact
(i1). K is closed and bounded

(#ii). Any open cover for K has a finite sets.

Functional Limits and Continuity

Definition 0.1.16 Let f : A — R and ¢ a limit point of A. We say that
lim, . f(z) = L when

O<|z—cl<d

YVe>0 36>0 s.t{ e A

}:>f(x)—L|<e

Note: f need not be defined at ¢
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Theorem 0.1.28 (Sequential characterization) Let f : A — R and ¢ a
limit point of A.
The following statements are equivalent

(i). limg_. f(x) =L
(i1). im f(x,) = L for all (x,) C A with x, # ¢ and limz,, = ¢

Corollary 0.1.17 consider f : A — R and let ¢ be a limit point of A. lim,_,. f(z)
does not exist if there exist x,,y, C A s.t.

o x, F#candy, #c
e limz, =limy, =c
o lim f(z,) £ lim f(yn)

Theorem 0.1.29 (Algebraic properties) Let f : A — R, ¢ a limit point of
A, and
lim f(z) =L and limg(z)=M

z—c T
Then
(i). lim, . kf(z) =kl k€eR
(ii). lim,o[f(2) + 9(a)] = L+ M
(i) Tim, o[ f(2)g(x)] = LM
(iv). limg . [f(z)/g(x)] = L/M provided M # 0
Definition 0.1.18 f: A — R is continuous at ¢ € A if

|z —c| <o

Ve>0 36>0 s,t{ ceA

}=Hﬂ@—ﬂm<e

Notes: f(c) needs to be defined, but ¢ need not be a limit point of A. Moreover,
6 may depend on both € and ¢

Example: if ¢ € A is isolated then f: A — R is continuous at c.
Let € > 0 be arbitrary

Take § > 0 such that Vs(c) N A = {c}, then

|t —¢c/<d andzx e A=x€Vs(c)NA

=xr=c
= f(z) = f(c)
= [f(z) — fle)] =0<e
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Theorem 0.1.30 let f : A — R and ¢ € A. the following statements are
equivalent:

(i). f is continuous at ¢
(i1). (z,) C A and limx,, = ¢ = lim f(z,) = f(c)
If ¢ is a limit point of A then (i) and (ii) are also equivalent with
(iit). limg . f(x) = f(c)

Corollary 0.1.19 let f : A = R and c € A a limit point, f is not continuous
at x = ¢ if there exists (x,) C A s.t

e rFcC

e limx, =c¢

o lim f(zn) # f(c)

Continuity and compactness

Theorem 0.1.31 f: A — R cont. and K C A compact = f(K) compact
Proof: Let (y,) C f(K) be arbitrary
There exists (x,) C K such that y, = f(z,) for all n
K compact = some subsequence z,, -+ € K
f continuous = y,, = f(zn,) = f(z) € f(K)
Warning: the previous theorem is false for pre-image:
fUK)={z e A: f(z) € K}

Theorem 0.1.32 (Maxima and Minima) Let K C R be compact and f :
K — R continuous, then f attains a mazimum and a minimum on K

Proof (maz): f(K) is compact

s =supf(K) exists and s € f(K)

s = f(c) for some ¢ € K

s is an upper bound for f(K) = f(z) < sforallz € K

Warning: without compactness the previous theorem is false!
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Uniform continuity

Theorem 0.1.33 f: A — R is uniformly continuous on A if

Ve>0 39>0 suchthatVe,yc A |z—y|<d=|f(z)— fly)| <e
Note: uniform means that 6 does not depend on x or y
Logical negation: Je¢y > 0 such that Vd > 0 Jz,y € A for which

|z —yl<d but [f(x) - f(y)l>e

Theorem 0.1.34 the following statements are equivalent
(i). f:A— R is not uniformly continuous on A

(i1). There exists €g > 0 and (xy,), (yn) C A such that

| —yn| =0 but |f(zn) — flyn)| > € foralln

Theorem 0.1.35 if f : K — R is continuous and K is compact then f is
uniformly continuous on K

Proof: let € > 0 be arbitrary
For all ¢ € K there exists §. > 0 such that
vt —c| <20, = |f(z)— f(o)| < %e for cosmetic purposes
O.=(c—d.,c+0d.), with ¢ € K, form an open cover for K
K CO U---UO0O,, for some cy,...,¢c, € K
Take x,y € K with |z — y| < J = min{d¢,, ..., o, }

(1)

|x —¢;| <6, forsomei=1,..,n
1

1) = )] < 3¢

lei =yl < e — x|+ | —y| <o, +9 <26,

7(e) = Fw)] < 5e

Apply triangle inequality with the (1) and (2) we have proved that the theorem
holds.

/faculty of Science and Engineering 27



University of Groningen Analysis/Zambelli Lorenzo

Intermediate value theorem
Theorem 0.1.36 if f : [a,b] — R is continuous and
fla)< L< f(b) or f(a)>L> f(b)
then f(c) = L for some ¢ € (a,b)
Proof: without loss of generality we can assume
e L =0, otherwise replace f(z) by f(z) — L
e f(a) <0< f(b), otherwise replace f(x) by —f(z)

the bisection method gives nested intervals I,,:

f(z)>0

. :

/ e S 3

At the left endpoint of each I,, we have f <0

At the right endpoint of each I,, we have f >0

there exist intervals I,, = [ay,,b,] such that
e f(ay) <0and f(b,) >0
e [yDI1 DD
e length(I,) = (b—a)/2"

NIP= 3Jc € [a, b] such that ¢ € I, = [an,b,] V

Derivatives

Definition 0.1.20 Let I C R be an interval and f: I — R, f is called differ-
entiable at c € I if

) — i 1) =1

Tz—c xr—c

exists

Theorem 0.1.37 f: 1 — R differentiable at c € I = f continuous at ¢
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Proof:
i f(z) — £(0)] = i 10T O
- D220 -
— 700
=0

Theorem 0.1.38 (Interior extremum theorem) assume
e f:(a,b) — R is differentiable
e [ attains a mazimum or minimum at ¢ € (a,b)
then f'(c) =0
Proof (mazimum): f(c) > f(x) for all z € (a,b)
Take sequences (z,,) and (y,) in (a,b) such that
Thn<c<y, VYneN and limz,=Ilimy, =c

f'(c) = 0 by the order limit theorem:

f/(¢) =1lim f(y;) ~ Z(C) <0

‘Warning: for closed intervals the previous theorem may be false!

Theorem 0.1.39 (Darboux’s theorem) if f : [a,b] — R is differentiable
and
fila) <L < f'(b) or fa)>L>f(b)

then there exist ¢ € (a,b) with f'(c) =L
Note:
e proof# intermediate value theorem applied to f’
e we do not assume f’ to be continuous
Proof: restrict to the case f'(a) < 0 < f/(b), Otherwise replace f(x) by
+(f(z) — Lx).
claim: 3s € (a,b) s.t. f(s) < f(a)
Otherwise f(z) > f(a) Yz € (a,b) so that

) — i T2 = T@)

T—a T —a

> 0 Contradiction!
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Similarly: 3t € (a,b) such that f(¢t) < f(b)
[a,b] compact and f continuous = f attains a minimum on [a, b]
f(s) < f(a) and f(t) < f(b) = f attains a minimum in (a,b)

Interior extremum theorem = f

Mean value theorem

Theorem 0.1.40 (Rolle’s theorem) assume that
e f:[a,b] = R is continuous and differentiable on (a,b
o f(a) = £(b)

then there exists ¢ € (a,b) such that f'(c) =0

Proof: f cont. and [a, b] cpt. = f attains max/min values

f(a) = f(b) both max and min = f is constant
= f'(x) =0 for all x
= take any c¢ € (a,b)

Otherwise, a max or min is attained at ¢ € (a,b)

Then f’(c) = 0 by interior extremum theorem
Theorem 0.1.41 (Mean value theorem) if
e f:[a,b] = R is continuous
e f is differentiable on (a,b)
Then there exists ¢ € (a,b) such that

o= 1O =1@
Proof: apply Rolle’s theorem to
ww) = 1)~ | LT o4y 4 pa)
then
k@) =TT O o) 4 )
h(z) = f(x) — k(xz) is continuous on [a,b] and differentiable on (a,b)
h(a) = h(b) =0

By Rolle’s theorem: 3¢ € (a,b) s.t.
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Sequence and Series of Functions

Pointwise convergence

Definition 0.1.21 converges pointwise consider f, : A — R
(fn) converges pointwise to f: A — R if for all fized x € A

lim f,(z) = f ()
Thus: for each fixed z € A we have

Ye>0 3N, €N st n>No,= |folz)—flz) <e

Uniform convergence

Definition 0.1.22 Uniform convergence (f,) converges uniformly to f :
A—Rif

Ve>0 IN.eN st n>Nce= |folz)—flx)|<e Veed

Note: uniform means that NV, is independent of x € A

Theorem 0.1.42 consider f, : A — R then

fn— [ uniformly < lim (sup | fr(z) — f(x)|> =0

z€A
Proof(=): for € > 0 there exists N. € N such that
n>N. = |fulz)—flx)|<e VeeA
= s |falw) — f@)] < €
Proof(«<): for € > 0 there exists N, € N such that
nzNe = swp|fa(@) - flo)l <e
= |falz) = flz)|<e Ve A
Theorem 0.1.43 Preservation of continuity assume f, : A — R satisfies
(i). fn — f uniformly on A
(i1). fn is continuous at ¢ € A for alln € N
Then f is continuous at ¢

Moral: uniform convergence preserves continuity

Proof: for € > 0 there exist
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e NeNsut. |fn(z) — f(z)| < jeforallz € A
e 6>0st|z—cl<d=|fn(x)— fn(c)| < 3e
if |z — ¢| < 0 then
[f(@) = f()| = |f(z) = fn(2) + fn(z) — fn(e) + fale) = F(o)]

<[f(@) = fn ()| + [ fn(2) = fn ()] + | fn(e) = flo)]

<1 +1 +1
—€+ -€e+ —€
3 3

w

€

Theorem 0.1.44 Term-by-term Continuity Theorem Let f, be continu-
ous functions defined on a set A C R, and assume >~ f converges uniformly
on A to a function f. Then, f is continuous on A

Theorem 0.1.45 Term-by-term Differentiability Let f,, be differentiable
functions defined on an interval A, and assume Y- | fI(x) converges uniformly
to a limit g(x) on A. If there exists a point Ty € [a,b] where Y > | fn(zo)
converges, then the series Ziozl fn(x) converges uniformly to a differentiable
function f(x) satisfying f'(z) = g(z) on A. In other words,

f@) =Y falx) and > fr(z)
n=1 n=1

Theorem 0.1.46 Weierstrass M-test For each n € N, let f,, be a function
defined on a set A C R, and let M,, > 0 be a real number satisfying

|jh($)‘§ Aln
Forallz € A. If 77| M, converges, then Y -, f, converges uniformly on A

Power Series

General form of PS:
o0
Zanx" = ag+ a1x + asx® + aszd + -
n=0
Theorem 0.1.47
oo oo
Z anx" converges at c#0 = Z |anz™| converges for x| < |c|
n=0 n=0
Proof:
oo
Z anc” converges = lima,c” =0
n=0
= (anc™) is bounded

= dM >0 st |apc"| < M VneN
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thus,
n n n
lanz™| = |an (cf) |:|anc"|-‘g’ SM‘EI Vn e N
c c c
Note: |z] < || = |%] <1
Apply comparison test
= x
>oMl|
n=0 ¢

Corollary 0.1.23 Radius of convergence There exists R > 0 such that

oo
converges :>E lanx™| converges

n=0

’ n

o |z| < R = PS converges at x
o |z| > R = PS diverges at x

R is called the radius of convergence

Methods for computing R from the a,’s

Root test: if L = lim {/|a,| exists, then R =1/L

An41

Qn

Ratio test: if L = lim

exists, then R=1/L

If L =0 then R = oo, that is converges on entire real line.

Proof Root Test: lim ¥/|anx™| = L|z| Yz € R fixed

For all € > 0 there exists N € N s.t.

Vlanz™| — L|x\‘ <e
= Llz| —e< Vl|ana™| < L|z| +¢€

=  (Llz| — )" < |anz™| < (L]z| + €)™

n>N =

thus if |z| < 1/L, then pick e < 1 — L|z|
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Apply comparison test:

Liz| +e<1 = Z(L|m| + €)™ converges

n=0

oo
= Z|anx”| converges

n=0

(o]
= Zanaz" converges
n=0
instead, if x| > 1/L then pick ¢ < L|z| —1
Liz|—e>1 = (L|z|—¢€)" unbounded
= |apz"| unbounded
o0
= Zanx" diverges
n=0

So far we have discuss only pointwise converge of a power series. Hence, now
we will look at uniform convergence

Theorem 0.1.48 Uniform convergence

o0 o0
Z\ancn| converges = Zanx" uniformly conv. on [—|c|,|c|]

n=0 n=0
Proof: for |x| < |c| we have
|ana”| = la| - |2|" < lan| - [e]* = |anc"| =: My

Apply Weierstrass’test:
o0 o0
ZMn conv. = Zanx" unif. conv. on [—|c|, |¢|]
n=0 n=0

Corollary 0.1.24 Continuity of the limit Y~ a,z" is continuous func-
tion on (—R, R)

Proof: take z¢ € (—R, R) and |zo| < ¢ < d < R, then

PS convergent at d PS absolutely convergent at ¢

=
= PS uniformly convergent on [—c, c]
= PS continuous on [—c¢,¢] each a,x™ is continuous
= PS continuous at xzg
Corollary 0.1.25

oo oo

Z |an, R"| convergent = Z anx™ uniformly conv. on [—R, R]

n=0 n=0

In particular, the PS is continuous on [—R, R]
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What if convergence is conditional at x = R or z = —R?

Lemma 0.1.2 Summation by parts if s, = uy + -+ - + uy, then

n n
E UKV = SpUnt1 + E Sk (Vi — Vky1)

k=1 k=1
Proof: set sg = 0, then
upVy = (Sk — Sk—1)Uk
= 8p(vp — Vkt1) + SKUE+1 — Sk—1Uk Vk=1,...n

Lemma 0.1.3 Abel’s lemma assume that (u,) and (v,) satisfy

o lup+--+u,| <CVneN

e 0<vyy1 <v, VR EN
Then

< Cun

n
E UV

k=1
Proof: if s,, = uy + -+ + uy, then

n
§ Uk Vg
k=1

n
Sntni1+ Y Sk(Vk — Uki1)

k=1
n

< snlvngr + Y Iskl(vr — viga)
k=1

< C (vn+1 + Z(Uk - Uk+1)>
k=1

= (Cu
Theorem 0.1.49 Abel’s theorem
(i). PS converges at x = R = PS conv. uniformly on [0, R]
(ii). PS converges at v = —R = PS conv. uniformly on [—R,0]
Proof(1): for all € > 0 there exists N € N s.t

i: akRk

k=m+1

n>m>N = <€

Take any x € [0, R] and set

r\F arRF ifk>m+1
Vr = (7) 9 U, = .
0 Otherwise
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From Abel’s lemma we get the Cauchy criterion:

n n
E akxk E UKV
k=1

k=m+1
Theorem 0.1.50 Term-wise Differentiability Theorem

= <e-—=<e Vz € [0, R]

o=

(o) oo
Zana:" conv. on (—R,R) = Znana:"_l conv. on (—R, R)
n=0 n=0

Proof: if |¢| < 1, then there exists M > 0 s.t
nc" ' <M VneN

Let || <t < R, then

1 x
n—1| _ — el
|nan,a™ | = ; <n ’t

n—1 M
Jlant"l = Yot

Apply comparison test
Theorem 0.1.51 For any PS with radius R we have

o0 / o
(Z anm"> = Z na,z"~' V€ (—R,R)
n=0 n=0

Proof: let 0 < ¢ < R, then

oo n—1 .
e > yna,x™ ! converges uniformly on [—c, (]
© Yo" sat 7 =0

oo anx™ converges at x =

Now apply Term-wise Differentiability Theorem

Taylor Series

Assume f is inf. often differentiable on interval around x =0

Definition 0.1.26 The Taylor series of f around x = 0 is given by

— /") ,
Z n!( .

n=0
Definition 0.1.27
" (k)0
sp(z) = Z f k!( )xk partial sum
k=0
En (33) = f(ﬂ?) — Sn (33) remainder
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Lemma 0.1.4 assume that
e = >0 and h(t) is n+ 1 times diff.ble on [0,z
e h(x) =0 and h*)(0) =0 for all k =0,...,n
Then "tV (c) = 0 for some c € (0,x)
Proof: repeated application of Rolles’s theorem gives

h(0) =h(z) = h'(c;) =0 for some ¢; € (0, 1)
h'(0) =h'(c1) = h"(cz) =0 for some co € (0,¢1)

R™W0) =™ (c,) = A" (chpq) =0 for some ¢ppq € (0,¢p)

Theorem 0.1.52 Lagrange remainder For n € N and x > 0 there exists
c € (0,z) such that

(n+1)(,
B(a) = 1o

if £ <0, then c € (x,0)

Note: ¢ depends on both n and x

Proof: fix x > 0 and consider

Note that:
h(z)=0 and R®(0)=0,k=0,..n

The lemma gives ¢ € (0,z) such that

f(n+1)(c) _ S%n+1)(c) _ (n + 1)' <f(1') - Sn(iE)> =0

xn-&-l

Rearraging gives
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Taylor series around different points
Assume f is inf. often diff.ble on interval around «a

Definition 0.1.28 The Taylor series of f around x = a is given by

Theorem 0.1.53 For x > a there exists ¢ € (a,z) such that

_ ()

Ba(a) = f(2) = su(w) = Ty (o — 0!

(r—a

if x <a then c € (z,a)

The Riemann Integral

The Fundamental Theorem of Calculus is a statement about the inverse relation-
ship between differentiation and integration. It comes in two parts, depending
on whether we are differentiating an integral or integrating a derivative. The
Fundamental Theorem of Calculus states that:

o fab F'(z)dx = F(b) — F(a) and
o if G(z) = [ f(t)dt then G'(z) = f(x)

Nevertheless, for understand it completely we need first to define Partition,
Upper Sums, and Lower Sums:

Definition 0.1.29 Partitions A partitions of [a,b] is a set of the form
P={a=zy<x1 <29<---<mj =b}
Let f : [a,b] — R be bounded and P be a partition of [a, b]

Definition 0.1.30 Lower sum Lower sum of f w.r.t P
mp = inf{f(z) 2z € [zp_1,zs]}
L(f,P) = > mklex — k1)
k=1

Let f : [a,b] = R be bounded and P be a partition of [a, ]

Definition 0.1.31 Upper sum Upper sum of f w.r.t P
M, = sup{f(z):z € [xp_1,2x]}

Uif,P) = ZMk(xkffk—l)
k=1
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Note: For a particular partition P, it is clear that U(f, P) > L(f, P)

Definition 0.1.32 Refinements Q is called a refinement of P if P C Q.
Provided that P and @Q are partitions of the same interval.

Lemma 0.1.5 If P C Q then
L(f,P) < L(f,Q) and U(f,P)=U(f,Q)
Corollary 0.1.33 If P C Q then
U(f,Q) — L(f,Q) <U(f,P)— L(f,P)

Proof (lower sum) Lemma 4.5.4: refine P by adding one point z € [xg_1, Z]

mr = inf{f(z):z € [rr_1, 2]}
my, = inf{f(x):x € [z,x]}
m’y = inf{f(z):x € [vr_1,2]}

Remember that A C B then inf A > inf B

me(xp —xp—1) = mp(xr —2) +me(z — Tr—1)

< mp(xg—2)+mk(z — k1)
Then proceed by induction
Lemma 0.1.6 for two partitions Py and Py we have L(f, Py) < U(f, P»)
Proof: let QQ = Py U P, then Py, P, C Q so
L(f,P) < L(f,Q) <U(f,Q) <U(f, P»)

Integrability
Assume f : [a,b] — R is bounded
Let P denote the collection of all partitions of [a, b]
Definition 0.1.34 The upper integral of f is defined to be

U(f)=int{U(f,P): PP}
The lower integral of f by

L(f) = sup{L(f,P) : P € P}

Lemma 0.1.7 For any bounded function f on [a,b], it is always the case that

U(f) =z L(f)
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Definition 0.1.35 A bounded function f : [a,b] — R is called Rimann inte-
grable if U(f) = L(f)

Notation:

b b
/ f=U)=L() or / f(@)de = U(f) = L(f)

Theorem 0.1.54 Criterion of integrability The following statements are
equivalent

(i). f is integrable
(ii). for all € > 0 there exists a partition P. such that
U(f,P.)—L(f,P.) <e

Proof (2= 1) :

U(f) <U(f,P.)
{L(f) EL(f,Pe) :>U(f)_L<f) S U(f7Pe)_L<f7P€> < €

This holds for all € >0 so U(f) = L(f)
Proof (1= 2): let € > 0 and choose Py and Py such that
1 1
L(f,P) > L(f) = 3¢ and  U(f,P) <U(f) + ;e

Let P, = P, U P, then

U(fvpi) _L(fvpé) < U(fvp2) _L(fapl)
= [U(f, P2) = UN] + [L(f) = L(f, P1)]
< %e—i— %6
=€
Theorem 0.1.55 f continuous on [a,b] = [ is integrable on [a, b]

Proof: f is uniformly continuous on [a, b

For all € > 0 there exists 6 > 0 such that
€
lz—yl<é = |[flx)-fly)l< Y a for all z,y € [a,b]

Let P be a partition such that xy, —xp_1 <0 for allk=1,2,...,n

There exist yi, zk € [xg—1,Tk] such that

fyr) =My and  f(zr) = my
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Note:

€

lyg — 2k] <8 = Mk*mk:f(yk)*f(zk)<b_a

Thus

I
M=

U(f,P)—L(f,P)

(Mk - mk)(l"k - -'Ekfl)

b
Il
—

k=1
€
T b_a (n = z0)
- bfa (b—a)=e

Example: any increasing function f : [a,b] — R is integrable
For any partition of [a,b] we have

My, =sup{f(z) : x € [xp_1, Tk}
= flxr)

my = inf{f(x): x € [xp—1, 2}

= f(xkfl)

An equispaced partition P gives

u(f.r = (My, — mi)(xg — 2p-1)
k=1
(b )y > [ (@r) = flax-a]
k=1
= (b— a)(f(b) — fla) -0 asn— o0

Properties of integrals

Theorem 0.1.56 Split property Let f : [a,b] — R be bounded and ¢ € (a,b),
then

f integrable on [a,b] <& f integrable on [a,c] and [c,b]

/abf=/:f+/cbf

In that case
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Proof (=): Let € > 0 and pick a partition P of [a,b] s.t.

U(f,P)—L(f,P) <ce

Let P, = PU{c} then
U(f,PC) _L(faPc) <€
Then Q = P.Na,d] is a partition of [a,c] and

m = F intervals in Q em<n
n = F intervals in P,

m < n implies

U(f,Q) - L(f,Q) = ZMk—mk)(xk—Jfk 1)

(M), — mp)(zp — Tp—1)

NERD

Il
N

|
o=

(f c)fL(faPc)

A\

€

Conclusion: f is integrable on [a,c|. The proof for [c,b] is similar. Proof (<

Let Py and Py be partitions of [a,c] and [c,b] s.t

1
U(f, P) = L(f, P) < 26 =12
Then P = Py U P; is a partition of [a,b] and

U(f,P) = U(f, P) + U(f, Py)
L(f,P)=L(f, P1)+ L(f, P)

1 1
U(fa ) (fv ) 764’56_6
Conclusion: f is integrable on [a,b]
Let € and Py and P» be as before

LUSUUf)

< L(f,P)+
= L(f, P) +L(f, Py) +

/f+/f+e
L33L7+Lﬂ
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Let € and Py and P> be as before

c b
/f+/ fF<Uf,P)+U(f, P)

<L(f7P1>+L(faP2)+€
=L(f,P)+e

</abf+e
/:f+/cbf§/abf

Definition 0.1.36 if f is integrable on [a.b] then

/abf:—/baf and /CcfzoforallceR

Theorem 0.1.57 if f,g are integrable on [a,b] then
o f -+ g integrable and f;(f +9) = f;f + fabg

o kf integrable and ["kf =k [° f for all k € R

And we have done.

Theorem 0.1.58 If f is integrable on [a,b] then

b
mgf(m)gM:m(b—a)g/ f<M(b-a)

a

Proof: for all partitions P of [a, b

b
L(f,P) g/ f<U(fP)

Taking P = {a,b} gives

U(f, P) = (b—a)-sup{f(z) : = € [a,0]} < M(b—a)
L(f,P)=(b—a)-inf{f(z) : x € [a,b]} > m(b— a)

Theorem 0.1.59 if f,g are integrable on [a,b] then

b b
flx) <g(x) foralla:e[a,b]:>/ fg/ g

Proof: since 0 < g(z) — f(x) for all x € [a,b] we have

0'(b—a)S/ab(g—f)joé/abg—/abf
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Theorem 0.1.60 If f is integrable on [a,b] then |f| is integrable and

/abf s/abeI

Proof: Let P be any partition of [a,b] and

My, =sup{f(z) : x € [xp_1,2k]}
my = inf{f(z) : z € [xx_1,zx]}
M} = sup{|£(z)| : & € [n_1, 24}
my, = inf{|f(z)] : z € [wp_1, 2]}

claim: M] —m) < My —my,

For all € > 0 there exist y,z € [xx_1, Tk] St

M}~ e < 1f()
, 1
i+ e > 11(2)

My, —my, — e < [f(y)] = [f(2)]
<|f(y) — f(2)]
< My, —my

M,é—mkSM]f—mk

Let P any partition of [a,b] then

NE

U(fl,P) = LS, P) = p (Mg — mp)(xk — wp-1)

>
Il
—

M=

(M), — mpg)(zp — 2-1)

Il
N

Il
o=

(f7P)_L(f’P)

Thus,

—ﬂMsﬂ@gﬁm:—fuméﬂsL%‘
/abf </abf|
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The fundamental theorem of calculus
Theorem 0.1.61 FTC part 1 assume that
(i). f is integrable on [a,b]
(i1). F is differentiable on [a,b] and
F'(z) = f(z) Vx € la,b]

Then .
/ f=F@b) - Fla)

Proof: let P be any partition of [a, b

n

F(b) = F(a) = Y [F(ax) — F(wr-1))

k=1

By the MVT =Y f(ty)(@k — z5-1)  t € (zh-1,71)
k=1

<> My (o — 2p1)

k=1
= U(f,P)
> L(f,P)

let P be any partition of [a,b], then
L(f,P) < F(b) = F(a) <U(f, P)
Taking sup/inf over all partitions gives
L(f) < F(b) = F(a) <U(f)
Since f is integrable it follows that
L(f) =U(f) = F(b) - F(a)
Theorem 0.1.62 FTC part 2 let [ be integrable on [a,b] and define

F(z) = /z f(t)dt  where x € [a,b]

Then
(i). F is uniformly continuous on [a,b]

(i). if [ is continuous at ¢, then F' is differentiable at ¢ and
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Proof(1) since f is integrable on [a,b] there exists M > 0 s.t.

|f(z)| <M Vzx € la,b]

/y f(t)dt‘

< [ 1wl

If x,y € [a,b] with © >y, then

|F(z) = F(y)| =

< Mz —y|
For given € > 0 take 6 = ¢/M.
Proof(2): for x # ¢ we have
F(x)—F 1 v
=T = = [ s 1o

1

r—cC

x
| 10 s
Let € > 0 be arbitrary and pick § > 0 s.t
[z —c| <6 =|f(z) - flc)| <e
Since |t — ¢| < |z —c| < d it follows that

1
|z — ¢l
1
<—— |z —c|e

|z — ¢l

Fx) = F(c)

—flo)| =

Awﬂﬂ—f®M4

=€
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