Analysis

zambellilorenzo

November 2020-Jenuary 2021

The Real Numbers

The Irrationality of $\sqrt{2}$

Theorem 0.0.1 The is no rational number whose square is 2

Proof: assume $\sqrt{2} = p/q$ for some $p, q \in \mathbb{Z}$ with $gcd(p, q) = 1$ $\Rightarrow p^2 = 2q^2$ $\Rightarrow p^2$ is even, so p itself is even, say $p = 2k$ $\Rightarrow 4k^2 = 2q^2$ so $2k^2 = q^2$ \Rightarrow q² is even, which bring a contradiction becuase we assumed that $gcd(p, q) = 1$

Some Preliminaries

Definition 0.0.1 (set) A set is any collection of objects. These objects are referred to as elements of the set

Set-Theoretic Notation:

- $A \cup B$: A union B
- $A \cap B$: A intersect B
- A^c : $\{x \in \Omega : x \notin A\} \Rightarrow$ complement of A
- $w \in \Omega$: w is an element of Ω ;
- $A \subseteq \Omega$: A is an subset of Ω
- $B \supseteq A$: B contains A (its the same of the previous);
- The set \emptyset is called empty set
- $\bigcup_{n=N} A_n \Rightarrow A_1 \cup A_2 \cdots$

Theorem 0.0.2 (De Morgan's Laws) Let A and B be subsets of \mathbb{R} , then: $(A \cap B)^c = A^c \cup B^c$ and $(A \cup B)^c = A^c \cap B^c$

Proof: We begin by showing that $(A \cap B)^c \subseteq A^c \cup B^c$.

Suppose $x \in (A \cap B)^c$, which means that $x \notin (A \cap B)$. Therefore, $x \notin A \cup B$, which means that $x \in A^c \cup B^c$. Hence, $(A \cap B)^c \subseteq A^c \cup B^c$.

Our proof is now halfway done. To complete it we show the opposite subset inclusion. First we begin with an element x in the set $A^c \cup B^c$, which means that x is an element of A^c or that x is an element of B^c . Thus x is not an element of a least one of the sets A or B . So, x cannot be an element of both A and B. This means that x is an element of $(A \cap B)^c$. Therefore, we have proved the law.

Definition 0.0.2 (Function) Given two sets A, B , a function from A to B is a rule or mapping that takes each element $x \in A$ and associates with it a single element of B. In this case, we write $f : A \rightarrow B$. Given an element $x \in A$, the expression $f(x)$ is used to represent the element of B associated with x by f. The set A is called the domain of f . The range of f is not necessarily equal to B but refers to the subsets of B given by $\{y \in B : y = f(x) \text{ for some } x \in A\}.$ That is, the set of all f -images of all the elements of A is known as the range of f. Thus, range of f is denoted by $f(A)$. B is the co-domain.

This definition of function is more or less the one proposed by Peter Lejeune Dirichlet (1805-1859) in the 1830s.

Absolute Value

Definition 0.0.3 (Absolute Value)

$$
|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}
$$

Lemma 0.0.1 $|x| = max\{x, -x\}$

Proof:

First case:

$$
x > 0 \Rightarrow -x \le 0
$$

\n
$$
\Rightarrow -x \le x
$$

\n
$$
\Rightarrow max\{-x, x\} = x = |x|
$$

Second case:

$$
x < 0 \Rightarrow -x > 0
$$

\n
$$
\Rightarrow -x > x
$$

\n
$$
\Rightarrow max\{-x, x\} = -x = |x|
$$

Definition 0.0.4 (Product rule)

$$
|xy| = |x| \cdot |y|
$$

Proof:

- If $x > 0, y > 0$, then by def. $|xy| = xy$ and by def. $xy = |x||y|$;
- if $x = 0, y = 0$ it is obvious that is true: $0 = 0$;
- If $x < 0, y > 0$, then $|xy| = (-x)y$ which by def. $(-x) = |x|, y = |x|$, therefore $(-x)y = |x||y|$;
- If $x > 0, y > 0$ same way of the previus;
- If $x < 0, y < 0$, then $|xy| = (-x)(-y) = |x||y|$

Definition 0.0.5 (quotient rule)

$$
\left|\frac{x}{y}\right| = \frac{|x|}{|y|}
$$

where $y \neq 0$

Proof:

- if $x = 0, y > 0$, then $\frac{0}{y}$ = $\frac{0}{y}$ = 0;
- same for $x = 0, y < 0$;
- $x < 0, y > 0$, then $\left| \frac{x}{y} \right| = \frac{-x}{y}$ by def. $\Rightarrow \frac{|x|}{|y|};$
- the same logic for $x < 0, y < 0$ and $x > 0, y < 0$

Inequalities

Lemma 0.0.2

$$
|x| \le a \Leftrightarrow -a \le x \le a
$$

Proof:

$$
|x| \le a \Rightarrow max\{-x, x\} \le a
$$

$$
\Rightarrow -x \le a, x \le a
$$

$$
\Rightarrow -a \le x \le a
$$

Theorem 0.0.3 (Triangle inequality)

$$
|x+y| \le |x| + |y|
$$

Proof:

- if $x + y > 0$, then $|x + y| = x + y \le |x| + y$ by lemma 1.2.1, which is the same for $y \le |y|$ therefore $|x + y| \le |x| + |y|$;
- if $x + y < 0$, then $|x + y| = -x y \le |x| + |y|$ by lemma 1.2.1

Hence, $|x + y| = max\{x + y, -x - y\} \le |x| + |y| \Rightarrow |x + y| \le |x| + |y|$

Theorem 0.0.4 (Reverse triangle inequalities)

$$
||x| + |y|| \le |x - y|
$$

Proof:

- $|x| = |x + y y| \le |x y| + |y|$ by theorem 1.2.2;
- $|x| |y| \le |x y|$ which is the same as $|y| |x| \le |y x| = |x y|$;
- $max\{|x| |y|, |y| |x|\} = ||x| + |y|| \le |x y|$

Theorem 0.0.5 Two real numbers a, b are equals if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$

Induction

Induction is used in conjunction with the natural numbers N. The fundamental principle behind induction is that if S is some subset of N with the property that

- (i). S contains 1 and
- (ii). whenever S contains a natural number n, it also contains $n + 1$,

then it must be that $S = N$.

The Axiom of Completeness

Definition 0.0.6 A set $A \subseteq \mathbb{R}$ is bounded above if there exist a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbb{R}$ satisfying $l \leq a$ for every $a \in A$

Definition 0.0.7 (least upper bound) $s \in \mathbb{R}$ is called the least upper bound of $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- (i). s is an upper bound for A ;
- (ii). if b is any upper bound for A, then $s \leq b$

The least upper bound is also frequently called the supremum of the set A: $s =$ supA

Lemma 0.0.3 if s is an upper bound for A then

$$
s = \sup A \Leftrightarrow \forall \epsilon > 0 \ \exists a \in A \ s.t. \ s - \epsilon < a
$$

Proof:

(1)Let $\epsilon > 0$, then

 $s - \epsilon < s \Rightarrow s - \epsilon$ is not an upper bound for A $\Rightarrow \exists a \in A \text{ s.t. } s - \epsilon < a$

(2) Let b be any upper bound for A

if
$$
b < s \Rightarrow \epsilon = s - b
$$
 there exist $a \in A$ s.t
 $\Rightarrow b = s - \epsilon < s$

This bring a contradiction. Hence, $s \leq b$, which means that $s = supA$

Definition 0.0.8 (greatest lower bound) $i \in \mathbb{R}$ is called the greatest lower bound of $A \subseteq \mathbb{R}$ if

- (i) . *i is a lower bound for A*
- (ii). if l is any lower bound for A then $l \leq i$

 $$

Lemma 0.0.4 if i is a lower bound for A then

 $i = \inf A \Leftrightarrow \forall \epsilon > 0 \ \exists a \in A \ s.t. \ a < i + \epsilon$

Proof:

 (1) Let $\epsilon > 0$

 $i < i + \epsilon \Rightarrow i + \epsilon$ cannot be a lower bound for A $\Rightarrow \exists a \in A \text{ s.t } a < i + \epsilon$

 (2) Let *l* be any lower bound for *A*

if
$$
i < l \Rightarrow \epsilon = l - i
$$

 $\Rightarrow \exists a \in A \text{ s.t. } l = \epsilon + i > a$

This is a contradiction, therefore $l \leq i$, which means that $i = infA$

Axiom of Completeness (AoC) 1 every nonempty subset of $\mathbb R$ that is bounded above has a least upper bound

Consequences of completeness

Theorem 0.0.6 (The Archimedean property) Theorem:

(i). $\forall x \in \mathbb{R} \exists n \in \mathbb{N} \ s.t. \ n > x$

(ii). $\forall y > 0 \ \exists n \in \mathbb{N} \ s.t \ 1/n < y$

Proof:(1) We prove the theorem by contradiction. If (1) is not true, then $\mathbb N$ is bounded above.

- AoC $\Rightarrow \alpha = \sup \mathbb{N}$ exists.
- $\alpha 1$ is not an upper bound for N.
- There exist $n \in \mathbb{N}$ such that $\alpha 1 < n$ by lemma $1.3.1 \Rightarrow \alpha < n + 1$
- $n + 1 \in \mathbb{N} \Rightarrow \alpha$ is not an upper bound for N. Contradiction!

(2)

- AoC $\Rightarrow \alpha = inf\mathbb{N}$
- $\alpha + 1$ is not an lower bound for N
- There exist $n \in \mathbb{N}$ such that $n < \alpha + 1$ by lemma 1.3.2
- $n-1 < \alpha$, which means that α is not a lower bound for N. Contradiction!

But there is another way to prove part (2) , and it's using (i) :

Let $y > 0$ be arbitrary and set $x = 1/y$. By (i) there exist $n \in \mathbb{N}$ such that $n > x$. Therefore $1/y < n \Rightarrow 1/n < y$

Theorem 0.0.7 (Nested Interval Property) For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$
I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots
$$

has a non-empty intersection; that is,

$$
\bigcap_{n=1}^{\infty} I_n \neq \emptyset
$$

*Proof:*Define $A = \{a_n : n \in \mathbb{N}\}\$

- Every b_n is an upper bound for A
- AoC \Rightarrow $x = \sup A \Rightarrow x \leq b_n$ by def. 1.3.2
- moreover, $a_n \leq x$
- Therefore, $a_n \leq x \leq b_n$

Remark! The NIP requires the intervals to be closed!

The rational number are dense in R

Theorem 0.0.8

$$
\forall a, b \in \mathbb{R} \text{ with } a < b \exists r \in \mathbb{Q} \text{ s.t } a < r < b
$$

*Proof:*Only case $0 \le a < b$:

- AP \Rightarrow there exist $n, m \in \mathbb{N}$ such that $1/n < b a$ and $na < m$
- we can choose this an small enough to be sandwich by $m, m-1 \Rightarrow m-1 \leq$ $na < m$
- $m \le na + 1 < n(b \frac{1}{n}) + 1 = nb$
- hence, $m \leq nb$ and $na < m$ which means that $a < \frac{m}{n} < b$

Corollary 0.0.9 (Density of in \mathbb{R}) Given two real numbers $a < b$, there exists an irrational number satisfying $a < t < b$

Existence of square roots

Theorem 0.0.9 $\exists \alpha \in \mathbb{R} \ s.t. \ \alpha^2 = 2$

Cardinality

The term cardinality is used in mathematics to refer to the size of a set.

1-1 Correspondence

Definition 0.0.10 (A one-to-one or injective, surjective, bijective functions) A function $f : A \rightarrow B$ is

- one-to-one (1-1) if $a_1 = a_2$ in A implies that $f(a_1) = f(a_2)$ in B.
- onto or surjective if, given any $b \in B$, it is possible to find an element $a \in A$ for which $f(a) = b$.

 \bullet bijective if f is both injective and surjective

Definition 0.0.11 Two sets A, B have the same cardinality if there exists a bijective function $f : A \rightarrow B$

Notation: $A ∼ B$

Theorem $0.0.10 \sim$ is an equivalence relation:

- (i). $A \sim A$
- (ii). $A \sim B \Leftrightarrow B \sim A$
- (iii). $A \sim B$ and $B \sim C \Rightarrow A \sim C$

Countable sets

Definition 0.0.12 A set A is called

- countable if $A \sim S$ for some $S \subseteq \mathbb{N}$
- uncountable otherwise

Lemma 0.0.5 A countable $\Leftrightarrow \exists f : A \rightarrow \mathbb{N}$ injective

Lemma 0.0.6 A countable \Leftrightarrow ∃g : N \rightarrow A surjective

Corollary 0.0.13

$$
B \text{ countable}
$$
\n
$$
f: A \rightarrow B \text{ injective}
$$
\n
$$
A \text{ countable}
$$
\n
$$
g: A \rightarrow B \text{ surjective}
$$
\n
$$
\Rightarrow B \text{ countable}
$$

Theorem 0.0.11 two parts:

- (*i*). The set $\mathbb Q$ is countable
- (*ii*). the set $\mathbb R$ is uncountable

Proof(ii): Assume $\mathbb R$ is countable. If $g : \mathbb{N} \to \mathbb{R}$ is surjective, then

 $R = \{x_1, x_2, x_3, x_4, ...\}$ where $x_n = g(n)$

To show: $\exists x \in \mathbb{R}$ s.t $x \neq x_n \ \forall n \in \mathbb{N}$ Choose closed and bounded intervals as follows:

$$
l_1 \quad \text{such that} \quad x_1 \notin l_1
$$
\n
$$
l_2 \subseteq l_1 \quad \text{such that} \quad x_2 \notin l_2
$$
\n
$$
l_3 \subseteq l_2 \quad \text{such that} \quad x_3 \notin l_3
$$
\n
$$
\vdots
$$

.

 $\text{NIP} \Rightarrow \exists x \in \mathbb{R} \text{ s.t. } x \in \bigcap_{n=1}^{\infty} I_n. \text{ But } x \neq x_n \text{ for all } n \in \mathbb{N} \text{ because } x_n \notin I_n.$

Corollary 0.0.14 $\mathbb{Q}^c = \mathbb{R} \backslash \mathbb{Q}$

Proof: We know that $\mathbb Q$ is countable

 \mathbb{Q}^c countable $\Rightarrow \mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^c$ countable. Contradiction! That is, there are "more" irrationals than rationals

Theorem 0.0.12 If $A \subseteq B$ and B is countable, then A is either countable or finite

Theorem 0.0.13 two parts:

- (i). if $A_1, A_2, ..., A_m$ are each countable sets, then the union $A_1 \cup A_2 \cup \cdots \cup A_m$ countable
- (ii). If A_n is countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable

Cantor's Theorem

Cantor published his discovery that $\mathbb R$ is uncountable in 1874.

Theorem 0.0.14 The open interval $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ is uncountable

Proof: take any $g : \mathbb{N} \to (0, 1)$, then

$$
g(1) = 0.d_{11}d_{12}d_{13}d_{14} \cdots
$$

\n
$$
g(2) = 0.d_{21}d_{22}d_{23}d_{24} \cdots
$$

\n
$$
g(3) = 0.d_{31}d_{32}d_{33}d_{34} \cdots
$$

\n
$$
\vdots
$$

Define $t \in (0,1)$ by

$$
t = 0.c_1c_2c_3c_4\cdots c_n = \begin{cases} 2 & \text{if } d_{nn} \neq 2 \\ 3 & \text{if } d_{nn} = 2 \end{cases}
$$

Then $t \neq g(n)$ for all $n \in \mathbb{N}$ so g is not surjective

Sequences and Series

The limit of a Sequence

Definition 0.0.15 A sequence is a function whose domain is N

Definition 0.0.16 (Convergence of a Sequence) a_n converges to a if

 $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad s.t. \quad n \ge N \quad \Rightarrow \quad |a_n - a| < \epsilon$

Notation: $a = \lim a_n$ or $(a_n) \rightarrow a$

Definition 0.0.17 (neighborhood) For $a \in \mathbb{R}$ and $\epsilon > 0$ the set

$$
V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\}
$$

is called the ϵ -neighborhood of a

Definition 0.0.18 (Convergence of a sequence: topological version) A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, there exist a point in the sequence after which all of the terms are in $V_{\epsilon}(a)$. In other words, every ϵ -neighborhood contains all but a finite number of the terms of a_n .

$$
\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ s.t. \ n \geq N \ \Rightarrow \ a_n \in V_{\epsilon}(a)
$$

Moral: the tail of the sequence gets trapped in $V_{\epsilon}(a)$

Theorem 0.0.15 (Uniqueness of Limits) The limit of a sequence, when it exists, must be unique

Standard limits

- $\lim 1/n^{\alpha} = 0 \quad (\alpha > 0)$
- $\lim c^n = 0 \quad (-1 < c < 1)$
- $\lim_{n \to \infty} c^n n^{\alpha} = 0 \quad (-1 < c < 1, \alpha \in \mathbb{R})$
- $\lim \sqrt[n]{c} = 1$ $(c > 0)$
- lim $\sqrt[n]{n} = 1$
- $\lim n!/n^n = 0$

Definition 0.0.19 (divergent sequence) A sequence that does not converge is called divergent

For understand what does it mean we need to obtain a Logical negation from the definition of convergence.

Logical negation:

$$
\exists \epsilon > 0 \text{ s.t } \forall N \in \mathbb{N} \text{ s.t. } |a_n - a| \ge \epsilon
$$

Definition 0.0.20 (a_n) is bounded if

$$
\exists M > 0 \quad s.t \quad |a_n| \le M \quad \forall n \in \mathbb{N}
$$

Theorem 0.0.16 if (a_n) is convergent \Rightarrow (a_n) is bounded

Proof: let $a = \lim a_n$, then for $\epsilon = 1$ there exist $N \in \mathbb{N}$ such that

$$
n \ge N \Rightarrow |a_n - a| < 1
$$

\n
$$
\Rightarrow ||a_n| - |a|| < 1
$$

\n
$$
\Rightarrow |a_n| - |a| < 1
$$

\n
$$
\Rightarrow |a_n| < 1 + |a|
$$

For $M = max\{|a_1|, |a_2|, |a_3|, ..., |a_{N-1}|, 1 + |a|\}$ we have

$$
|a_n|\leq M\quad \forall n\in\mathbb{N}
$$

Warning: the converse is not true!

NOTE:Theorem can be used to prove that a sequence diverges

0.1 Algebraic properties

Theorem 0.1.1 if $a = \lim a_n$ and $b = \lim b_n$ then

- (i). $\lim((ca_n) = ca$ where $c \in \mathbb{R}$
- (*ii*). $\lim(a_n + b_n) = a + b$
- (iii). $\lim(a_n b_n) = ab$
- (iv). $\lim(a_n/b_n) = a/b$ if $b \neq 0$

Proof (ii):

$$
|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)|
$$

\n
$$
\leq |a_n - a| + |b_n - b|
$$

Let $\epsilon > 0$ be arbitrary, then

$$
\exists N_1 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |a_n - a| < \frac{1}{2}\epsilon
$$
\n
$$
\exists N_2 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |a_n - a| < \frac{1}{2}\epsilon
$$

Define $N = max\{N_1, N_2\}$ then

$$
n \ge N \quad \Rightarrow \quad |(a_n - b_n) - (a + b)| < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon
$$

Proof (iii):

$$
|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|
$$

\n
$$
= |b_n(a_n - a) + a(b_n - b)|
$$

\n
$$
\leq |b_n(a_n - a)| + |a(b_n - b)|
$$

\n
$$
= |b_n||a_n - a| + |a||b_n - b|
$$

\n
$$
\leq M|a_n - a| + |a||b_n - b|
$$
 (b_n) is convergent and therefore bounded

Let $\epsilon > 0$ be arbitrary, then

$$
\exists N_1 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |a_n - a| < \frac{1}{2M} \epsilon
$$
\n
$$
\exists N_2 \in \mathbb{N} \quad s.t. \quad n \ge N_1 \quad \Rightarrow |b_n - b| < \frac{1}{2|a|} \epsilon
$$

Define $N = max\{N_1, N_2\}$ then

$$
n \ge N \quad \Rightarrow \quad |a_n b_n - ab| < \frac{1}{2M} \epsilon + \frac{1}{2|a|} \epsilon = \epsilon
$$

Order properties

Theorem 0.1.2 (order limit theorem) if $\lim a_n = a$ and $\lim b_n = b$ then

(*i*). $a_n \geq 0 \quad \forall n \in \mathbb{N} \quad \Rightarrow a \geq 0$ (ii). $a_n \leq b_n \quad \forall n \in \mathbb{N} \quad \Rightarrow a \leq b$ (iii). $c \leq b_n \quad \forall n \in \mathbb{N} \quad \Rightarrow c \leq b$ (iv). $a_n \leq c \quad \forall n \in \mathbb{N} \quad \Rightarrow a \leq c$

Proof (i): assume that $a < 0$ For $\epsilon = |a|$ there exist $N \in \mathbb{N}$ such that

$$
n \ge N \Rightarrow |a_n - a| < \epsilon
$$
\n
$$
\Rightarrow -\epsilon < a_n - a < \epsilon
$$
\n
$$
\Rightarrow a - \epsilon < a_n < a + \epsilon
$$
\n
$$
\Rightarrow a_n < a + |a| = 0
$$
\nContraction!

Note: Loosely speaking, limits and their properties do not depend at all on what happens at the beginning of the sequence but are *strictly* determined by

what happens when n gets large. In the language of analysis, when a property is not necessarily possessed by some finite number of initial terms but is possessed by all terms in the sequence after some point N , we say that the sequence eventually has this property.

Theorem 0.1.3 (Squeeze theorem) If $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, and if $\lim x_n = \lim z_n = l$, then $\lim y_n = l$ as well.

Proof: Given $\epsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that whenever $n \geq N_1, n \geq N_2$, $|x_n - l| < \epsilon$ and $|z_n - l| < \epsilon$

Choose $N = max\{N_1, N_2\}$ then we get whenever $n \ge N$, $|x_n - l| < \epsilon$, $|z_n - l| < \epsilon$. This gives

$$
-\epsilon < x_n - l \le y_n - l \le z_n - l < \epsilon
$$
\n
$$
-\epsilon < y_n - l < \epsilon \Rightarrow |y_n - l| < \epsilon
$$

or

If $y = \lim y_n$ then by thm $y_n \le z_n \Rightarrow y \le l$ and $x_n \le y_n \Rightarrow l \le y$. Therefore, $l \leq y \leq l$. Hence, $y = l$.

The monotone convergence theorem and infinite series

Definition 0.1.1 (a_n) is called monotone if is either

- increasing: $a_n \leq a_{n+1} \ \forall n \in \mathbb{N}$
- decreasing: $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$

Theorem 0.1.4 (Monotone converges theorem (MCT)) (a_n) bounded \mathcal{B} monotone \Rightarrow (a_n) converges. $a = \lim a_n$ exist

Proof: $A = \{a_n : n \in \mathbb{N}\}\$ is bounded Strategy of proof:

- a_n increasing \Rightarrow lim $a_n = supA$
- a_n decreasing \Rightarrow lim $a_n = infA$

Assume that (a_n) increases

Let $s = \sup\{a_n : n \in \mathbb{N}\}\$

Let $\epsilon > 0$ be arbitrary, then $s - \epsilon$ is not an upper bound. Therefore, there exists $N \in \mathbb{N}$ s.t. $s - \epsilon < a_N$. For $n \geq N$ we have

$$
s - \epsilon < a_N \le a_n \le s < s + \epsilon \quad \Rightarrow |a_n - s| < \epsilon
$$

Assume that (a_n) decreses

Let $i = inf\{a_n : n \in \mathbb{N}\}\$

Let $\epsilon > 0$ and arbitrary, then $i + \epsilon$ is not an lower bound. Therefore, there exist $N \in \mathbb{N}$ s.t $a_N < i + \epsilon$. For $n\geq N$ we have

$$
i + \epsilon > a_N \ge a_n \ge i > i - \epsilon \quad \Rightarrow |a_n - i| < \epsilon
$$

Subsequences

Definition 0.1.2 pick $n_k \in \mathbb{N}$ such that

$$
1\leq n_1
$$

If (a_n) is a sequence then

$$
(a_{n_k}) = (a_{n_1}, a_{n_2}, a_{n_3,...})
$$

is called a subsequence of (a_n) . Note: $n_k \geq k$ since $k \in \mathbb{N}$

Theorem 0.1.5 $\lim a_n = a \Rightarrow \lim a_{n_k} = a$

Proof: let $\epsilon > 0$ be arbitrary, then

$$
\exists N \in \mathbb{N} \quad \text{s.t} \quad n \ge N \Rightarrow |a_n - a| < \epsilon
$$
\n
$$
k \ge N \Rightarrow n_k \ge N
$$
\n
$$
\Rightarrow |a_{n_k} - a| < \epsilon
$$

Theorem 0.1.6 (Bolzano-Weierstrass theorem) Every bounded sequence has a convergent subsequence.

Proof: There exists $M > 0$ such that $a_n \in [-M, M]$ for all n

Bisect the closed interval $[-M, M]$ into two closed intervals $[-M, 0], [0, M]$. Halving-process gives nested closed intervals

$$
I_1 \supset I_2 \supset I_3 \supset \cdots
$$

NIP \Rightarrow there exists $x \in \bigcap_{n=1}^{\infty} I_n$

each I_k contains infinitely many terms of the seq.

• pick $n_1 \in \mathbb{N}$ with $a_{n_1} \in I_1$

- pick $n_2 \in \mathbb{N}$ with $n_2 > n_1$ and $a_{n_2} \in I_2$
- pick $n_3\in\mathbb{N}$ with $n_3>n_1$ and $a_{n_3}\in I_3$. . .

Note that

$$
\begin{array}{ccc}\nx & \in I_k \\
a_{n_k} & \in I_k\n\end{array}\n\right\} \Rightarrow |a_{n_k} - x| \leq length(I_k) = \frac{2M}{2^k} \to 0
$$

Infinitely series 1

Definition 0.1.3

• Infinite series:

$$
\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots
$$

 $\bullet\,$ n-th partial sum:

$$
s_n = a_1 + a_2 + \dots + a_n
$$

• if $\lim s_n = s$, then we say the series converges to s

Theorem 0.1.7 (Euler's famous example)

$$
\sum_{k=1}^{\infty} \frac{1}{k^2} \text{ converges}
$$

Proof:

$$
s_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}
$$

$$
s_n < s_{n+1} \quad \forall n \in \mathbb{N}
$$

$$
s_n < 2
$$

$$
MCT \Rightarrow \lim s_n \text{ exists}
$$

This because

$$
s_n = 1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 3} + \frac{1}{4 \cdot 4} + \dots + \frac{1}{n \cdot n}
$$

$$
< 1 + 12 \cdot 1 + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3} + \dots + \frac{1}{n \cdot (n-1)}
$$

$$
= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)
$$

$$
= 1 + 1 - \frac{1}{n}
$$

$$
< 2
$$

Remark: since $s_n < 2$ for all n the order limit theorem implies

$$
\sum_{k=1}^{\infty} \frac{1}{k^2} = \lim s_n \le 2
$$

Euler proved in 1734 that in fact

$$
\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}
$$

Theorem 0.1.8 (harmonic seires)

$$
\sum_{k=1}^{\infty} \frac{1}{k}
$$
 diverges

The integral test for convergence

Theorem 0.1.9 assume that $f : [1, \infty] \to \mathbb{R}$ is

- (i). positive
- (ii). continuous
- (iii). monotonically decreasing

Let $a_k = f(k)$ then

$$
\sum_{k=1}^{\infty} a_k \text{ converges} \Leftrightarrow \int_{1}^{\infty} f(x) \, dx < \infty
$$

The Cauchy Criterion

Definition 0.1.4 (Cauchy sequence) (a_n) is a Cauchy sequence if

 $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad s.t. \quad n, m \ge N \Rightarrow |a_n - a_m| < \epsilon$

Meaning: the terms get close to each other

Theorem 0.1.10 (a_n) convergent \Rightarrow (a_n) Cauchy

Proof: assume $a = \lim a_n$ For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$
n \ge N \Rightarrow |a_n - a| < \frac{1}{2}\epsilon
$$
\n
$$
m, n \ge N \Rightarrow |a_n - a_m| = |(a_n - a) - (a_m - a)|
$$
\n
$$
\le |a_n - a| + |a_m - a|
$$
\n
$$
< \epsilon
$$

Lemma 0.1.1 (a_n) Cauchy \Rightarrow (a_n) bounded

Proof: for $\epsilon = 1$ there exists $N \in \mathbb{N}$ such that

$$
n, m \ge N \rightarrow |a_n - a_m| < 1
$$

\n
$$
n \ge N \Rightarrow |a_n - a_N| < 1
$$

\n
$$
\Rightarrow |a_n| - |a_N| < 1
$$

\n
$$
\Rightarrow |a_n| - |a_N| < 1
$$

\n
$$
\Rightarrow |a_n| < 1 + |a_N|
$$

For $M = max\{|a_1|, |a_2|, ..., |a_{N-1}|, 1 + |a_N|\}$ we have

 $|a_n| \leq M$ for all $n \in \mathbb{N}$

Theorem 0.1.11 (Cauchy Criterion) (a_n) Cauchy \Rightarrow (a_n) convergent

Proof:

Lemma \Rightarrow (a_n) is bounded For weistrass-bolzano \Rightarrow (a_n) has a convergent subsequence (a_{n_k}) $a = \lim a_{n_k}$ For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t

$$
n, m \ge N \quad \Rightarrow |a_n - a_m| < \frac{1}{2}\epsilon
$$

Fix an index $n_k \geq N$ such that $|a_{n_k} - a| < \frac{1}{2}\epsilon$, then

$$
n \ge N \Rightarrow |a_n - a| = |a_n - a_{n_k} + a_{n_k} - a|
$$

\n
$$
\le |a_n - a_{n_k}| + |a_{n_k} - a|
$$

\n
$$
< \epsilon
$$

Infinite Series Properties

Theorem 0.1.12 (Algebraic Limit Theorem for series) if $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$ then

(i). $\sum_{k=1}^{\infty} ca_k = cA$ for all $c \in \mathbb{R}$

(*ii*).
$$
\sum_{k=1}^{\infty} (a_k + b_k) = A + B
$$

Theorem 0.1.13 (Cauchy Criterion) the following statements are equivalent

- (i). $\sum_{k=1}^{\infty} a_k$ converges
- (ii). for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t.

$$
n > m \ge N \Rightarrow |a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon
$$

Proof: note that

$$
|s_n - s_m| = |a_{m+1} + \cdots + a_n|
$$

Statement 1 \Leftrightarrow (s_n) converges \Leftrightarrow (s_n) Cauchy \Leftrightarrow Statement 2

Theorem 0.1.14 $\sum_{k=1}^{\infty} a_k$ converges $\Rightarrow \lim a_k = 0$

Proof: let $\epsilon > 0$ be arbitrary There exists $N\in\mathbb{N}$ such that

$$
n > m \ge N \quad \Rightarrow |a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon
$$

$$
n = m + 1 \text{ and } m \ge N \quad \Rightarrow |a_{m+1}| < \epsilon
$$

Warning: the converse is NOT true! Note: the previous theorem also gives a test for divergence

Theorem 0.1.15 (Comparison test) if $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$, then

- (i). $\sum_{k=1}^{\infty} b_k$ converges $\Rightarrow \sum_{k=1}^{\infty} a_k$ converges
- (ii). $\sum_{k=1}^{\infty} a_k$ diverges $\Rightarrow \sum_{k=1}^{\infty} b_k$ diverges

Proof:

$$
|a_{m+1} + a_{m+2} + \dots + a_n| = a_{m+1} + a_{m+2} + \dots + a_n
$$

\n
$$
\leq b_{m+1} + b_{m+2} + \dots + b_n
$$

\n
$$
= |b_{m+1} + b_{m+2} + \dots + b_n|
$$

Apply the Cauchy criterion for series.

Note: this theorem does not be true for all k , but its sufficient that is true for a k sufficiently large

Theorem 0.1.16 (Alternating series test) assume

- (i). $0 \le a_{k+1} \le a_k$ for all $k \in \mathbb{N}$
- (*ii*). $\lim a_k = 0$

then the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1}a_k$ converges

Proof: consider the partial sums

$$
s_n = a_1 - a_2 + a_3 - \dots + (-1)^{n+1} a_n
$$

the partial sums form nested intervals:

$$
I_n = [s_{2n}, s_{2n-1}] \Rightarrow I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots
$$

 $NIP \Rightarrow$ there exists $s \in \mathbb{N}$ such that $s \in I_n$ for all $n \in \mathbb{N}$

Let $\epsilon > 0$ be arbitrary Choose $N \in \mathbb{N}$ such that $a_{2N} < \epsilon$, then

$$
n \ge 2N \quad \Rightarrow s, s_n \in I_N = [s_{2N}, s_{2N-1}]
$$

$$
\Rightarrow |s - s_n| \le s_{2N-1} - s_{2N}
$$

$$
\Rightarrow |s - s_n| \le a_{2N}
$$

$$
\Rightarrow |s - s_n| < \epsilon
$$

Theorem 0.1.17 (Absolute vs. conditional convergence) $\sum_{k=1}^{\infty} |a_k|$ con $verges \Rightarrow \sum_{k=1}^{\infty} a_k$ converges

Proof: note that

$$
0 \le a_k + |a_k| \le 2|a_k| \quad \text{for all } k \in \mathbb{N}
$$

Comparison Test $\Rightarrow \sum_{k=1}^{\infty} (a_k + |a_k|)$ converges Apply Algebraic Limit Theorem:

$$
\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k + |a_k|) - \sum_{k=1}^{\infty} |a_k| \quad \text{converges}
$$

Definition 0.1.5 $\sum_{k=1}^{\infty} a_k$ is called

- (*i*). **absolutely convergent** if $\sum_{k=1}^{\infty} |a_k|$ converges
- (ii). conditionally convergent if it converges but $\sum_{k=1}^{\infty} |a_k|$ diverges

Definition 0.1.6 (geometric series) a geometric series is of the form

$$
\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + \dots
$$

$$
\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}
$$

If and only if $|r| < 1$

Definition 0.1.7 telescoping series are the form

$$
\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (b_k - b_{k+1})
$$

Successive terms cancel each other:

$$
s_n = a_1 + a_2 + a_3 + \dots + a_n
$$

= $(b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \dots + (b_n - b_{n+1})$
= $b_1 - b_{n+1}$

The series converges \Leftrightarrow (b_n) converges

Basic Topology of R

Interval

Definition 0.1.8 Closed interval (endpoints included):

$$
[a, b] = \{x \in \mathbb{R} : a \le x \le b\}
$$

Definition 0.1.9 Open interval (endpoints not included):

 $(a, b) = \{x \in \mathbb{R} : a < x < b\}$

Definition 0.1.10 $O \subset \mathbb{R}$ is open if

 $\forall a \in O \quad \exists \epsilon > 0 \quad s.t. \quad V_{\epsilon}(a) \subset O$

Note: the empty set \emptyset is open by definition

Theorem 0.1.18

 (i) . Unions of **arbitrary** collections of open sets are open

 $(ii).$ Intersections of **finite** collections of open sets are open

Proof(i): let $O = \bigcup_{i \in I} O_i$ with each O_i open $x \in O \Rightarrow x \in O_i$ for some $i \in I$ There exists $\epsilon > 0$ such that $V_{\epsilon}(x) \subset O_i \subset O$

Proof(ii): let $O = O_1 \cap O_2 \cap \cdots \cap O_n$ with each O_i open $x \in O \Rightarrow x \in O_i$ for all $i = 1, ..., n$ For all $i = 1, ..., n$ there exists $\epsilon_i > 0$ such that $V_{\epsilon_i}(x) \subset O_i$ For $\epsilon = min{\epsilon_1, ..., \epsilon_n}$ we have $V_{\epsilon}(x) \subset O_i$ for all $i = 1, ..., n$

Warning: the intersection of infinitely many open sets need not be open!

Definition 0.1.11 (limit point) x is a limit point of $A \subset \mathbb{R}$ if $\forall \epsilon > 0$ $V_{\epsilon}(x)$ intersects A in some point other than x

Note: Limit points of A may or may not belong to A

Theorem 0.1.19 The following statements are equivalent:

- $(i).$ x is a limit point of A
- (ii). There exists a sequence a_n in A such that

 $a_n \neq x \quad \forall n \in \mathbb{N} \quad and \quad x = \lim a_n$

Proof (i,ii): let $n \in \mathbb{N}$ and set $\epsilon = 1/n$

There exists $a_n \in V_{\epsilon}(x) \cap A$ with $a_n \neq x$

Note that $|a_n - x| < \epsilon = \frac{1}{n}$ *Proof (ii,i)*: for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$
n \ge N \Rightarrow |a_n - x| < \epsilon
$$

In particular, $a_N \in V_{\epsilon}(x)$ By assumption $a_N \neq x$ and $a_N \in A$

Definition 0.1.12 (Closed set) A set is closed if it contains its limit points

Theorem 0.1.20 the following statements are equivalent

- (i) . F is closed
- (ii). Every Cauchy sequence in F has its limit in F

Proof (i,ii): Let $(a_n) \subset F$ be Cauchy

 $x = \lim_{n \to \infty} a_n$ exists; now consider two cases:

- $x \neq a_n$ for all $n \in \mathbb{N} \Rightarrow x$ is a limit point of $F \Rightarrow x \in F$
- $x = a_n$ for some $n \in \mathbb{N} \Rightarrow x \in F$ holds trivally

Proof(ii,i): let x be a limit point of F

 $x = \lim a_n$ with $a_n \in F$ and $a_n \neq x$ for all $n \in \mathbb{N}$

 (a_n) is convergent \Rightarrow (a_n) Cauchy \Rightarrow $x \in F$ by assumption

Definition 0.1.13 (Closure) the closure of A is defined as

 $\overline{A} = A \cup \{all \ limit \ points \ of \ A\}$

Theorem 0.1.21 \bar{A} is closed

Proof: show that x limit point of $\overline{A} \Leftrightarrow x$ limit point of A

 $\overline{A} = A \cup L$ with $L = \{\text{limit points of } A\}$

x limit point of $\bar{A} \Rightarrow \forall \epsilon > 0$ $\exists y \in V_{\epsilon}(x) \cap \bar{A} \quad y \neq x$ Note: either $y \in A$ or $y \in L$

(i). $y \in A \Rightarrow x$ is a limit point of A

(ii).
$$
y \in L \Rightarrow \forall \delta > 0 \quad \exists z \in V_{\delta}(y) \cap A \quad z \neq y
$$

Note: $V_{\delta}(y) \subset V_{\epsilon}(x) \backslash \{x\}$ for δ small enough

Therefore x is a limit point of A

Theorem 0.1.22 (complements)

- (i). O open \Leftrightarrow O^c closed
- (ii). F closed \Leftrightarrow F^c open

Warning: sets are not likes doors!

- \bullet (0,1] and ${\mathbb Q}$ are neither open nor closed
- $\mathbb R$ and \emptyset are both open and closed

Practical consequence: it is impossible to prove openness/ closedness by contradiction

Theorem 0.1.23 (unions and intersections)

- (i). Unions of finite collections of closed sets are closed
- (ii). Intersections of arbitrary collections of closed sets are closed

 $Proof(i)$:

$$
F_1, ..., F_n \text{ closed} \Rightarrow F_1^c, ..., F_n^c \text{ open}
$$

\n
$$
\Rightarrow F_1^c \cap \cdots \cap F_n^c \text{ open}
$$

\n
$$
\Rightarrow (F_1^c \cap \cdots \cap F_n^c)^c \text{ closed}
$$

\n
$$
\Rightarrow F_1 \cup \cdots \cup F_n \text{ closed}
$$

Proof (ii):

$$
F_i \text{ closed for all } i \in I \Rightarrow F_i^c \text{ open for all } i \in I
$$

$$
\Rightarrow \bigcup_{i \in I} F_i^c \text{ open}
$$

$$
\Rightarrow (\bigcup_{i \in I} F_i^c)^c \text{ closed}
$$

$$
\Rightarrow \bigcup_{i \in I} F_i \text{ closed}
$$

The last passage of both proof we have used De Morgan's laws, which state that for any collection of sets $\{E_i : i \in I\}$

$$
\left(\bigcup_{i\in I}E_i\right)^c=\bigcap_{i\in I}E_i^c\quad\text{ and }\quad\left(\bigcap_{i\in I}E_i\right)^c=\bigcup_{i\in I}E_i^c
$$

Warning: the union of infinitely many closed sets need not be closed

Compact sets

Definition 0.1.14 (sequential definition) $K \subset \mathbb{R}$ is compact if every sequence in K has a convergent subq. with a limit in K

Theorem 0.1.24 $K \subset \mathbb{R}$ compact $\Leftrightarrow K$ closed and bounded

Proof(\Rightarrow): Assume K is not bounded. There exists $(x_n) \subset K$ with $|x_n| > n$ for all $n \in \mathbb{N}$.

 (x_n) has no convergent subsequence. Contradiction!

Let x be a limit point of K. There exists $(x_n) \subset K$ such that $x = \lim x_n$.

K compact \Rightarrow there exists a subsequence $(x_{n_k}) \rightarrow y \in K$. $(x_{n_k}) \rightarrow x$ as well \Rightarrow $x = y \in K$

Proof(\Leftarrow): let $(x_n) \subset K$. K is bounded $\Rightarrow (x_n)$ is bounded.

B-W Theorem \Rightarrow (x_n) has a convergent subsequence. Let $x = \lim x_{n_k}$. Hence, K is closed \Rightarrow $x \in K$

Theorem 0.1.25 (Generalization of the NIP) assume that $K_n \neq \emptyset$ is compact for all $n \in \mathbb{N}$ and

 $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$

Then $\bigcap_{n=1}^{\infty} K_n$ is nonempty

Open covers

Definition 0.1.15 Let $A \subset \mathbb{R}$ and assume that the sets $O_i \subset \mathbb{R}$ where $i \in I$, are open. We call the sets O_i an open cover for A if

$$
A \subset \bigcup_{i \in I} O_i
$$

Theorem 0.1.26 K compact \Leftrightarrow any open cover for K has a finite subcover

 $Proof(\Rightarrow)$:

Let $O_i, i \in I$, be an open cover for K without finite subcover.

Take a bounded, closed interval $J_1 \supset K$

Halving process: construct J_n be closed intervals s.t.

- $J_1 \supset J_2 \supset J_3 \supset \cdots$
- $K \cap J_n$ can not be coverd by finitely many O_i 's

 $K \cap J_n$ compact for all $n \in \mathbb{N} \Rightarrow \bigcap_{n=1}^{\infty} (K \cap J_n) \neq \emptyset$.

There exists $x \in K$ such that $x \in J_n$ for all n

 $x \in O_i$ for some $i \in I$ and let $\epsilon > 0$ such that $V_{\epsilon}(x) \subset O_i$

There exists $N \in \mathbb{N}$ such that length $(J_N) < \epsilon$

Hence, $K \cap J_N \subset J_N \subset V_{\epsilon}(x) \subset O_i$. Contradiction!

 $Proof(\Leftarrow)$:

 $O_n = (-n, n), n \in \mathbb{N}$, is an open cover for K.

 $K \subset O_1 \cup O_2 \cup \cdots \cup O_N = (-N, N)$ for some $N \in \mathbb{N}$. Therefore, K is bounded.

Let y be a limit point K

There exists $(y_n) \subset K$ with $y = \lim y_n$. Assume $y \notin K$

Let $x \in K$ and $O_x = V_{\epsilon}(x)$ with $\epsilon = \frac{1}{2}|x - y|$

The sets, O_x , where $x \in K$, form an open cover for K

There exist $x_1, ..., x_n \in K$ such that $K \subset O_{x_1} \cup \cdots \cup O_{x_n}$

Pick $N \in \mathbb{N}$ such that $|y_N - y| < min\{\frac{1}{2}|x_i - y| : i = 1, ..., n\}$

Hence, $y_N \notin O_{x_1} \cup \cdots \cup O_{x_n}$ Contradiction!

Theorem 0.1.27 (Heine-Borel) Let $K \subset \mathbb{R}$, the following statements are equivalent:

- (i) . K is compact
- (ii). K is closed and bounded
- (iii). Any open cover for K has a finite sets.

Functional Limits and Continuity

Definition 0.1.16 Let $f : A \rightarrow \mathbb{R}$ and c a limit point of A. We say that $\lim_{x\to c} f(x) = L$ when

$$
\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t \begin{cases} 0 < |x - c| < \delta \\ x \in A \end{cases} \Rightarrow |f(x) - L| < \epsilon
$$

Note: f need not be defined at c

Theorem 0.1.28 (Sequential characterization) Let $f : A \rightarrow \mathbb{R}$ and c a limit point of A.

The following statements are equivalent

- (i). $\lim_{x\to c} f(x) = L$
- (ii). $\lim f(x_n) = L$ for all $(x_n) \subset A$ with $x_n \neq c$ and $\lim x_n = c$

Corollary 0.1.17 consider $f : A \to \mathbb{R}$ and let c be a limit point of A. $\lim_{x\to c} f(x)$ does not exist if there exist $x_n, y_n \subset A$ s.t.

- $x_n \neq c$ and $y_n \neq c$
- $\lim x_n = \lim y_n = c$
- $\lim f(x_n) \neq \lim f(y_n)$

Theorem 0.1.29 (Algebraic properties) Let $f : A \rightarrow \mathbb{R}$, c a limit point of A, and

$$
\lim_{x \to c} f(x) = L \quad and \quad \lim_{x \to c} g(x) = M
$$

Then

- (i). $\lim_{x\to c} k f(x) = k l \; k \in \mathbb{R}$
- (*ii*). $\lim_{x \to c} [f(x) + g(x)] = L + M$
- (iii). $\lim_{x\to c}[f(x)g(x)] = LM$
- (iv). $\lim_{x\to c}[f(x)/g(x)] = L/M$ provided $M \neq 0$

Definition 0.1.18 $f : A \to \mathbb{R}$ is continuous at $c \in A$ if

$$
\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t \begin{cases} |x - c| < \delta \\ x \in A \end{cases} \Rightarrow |f(x) - f(c)| < \epsilon
$$

Notes: $f(c)$ needs to be defined, but c need not be a limit point of A. Moreover, δ may depend on both ϵ and c

Example: if $c \in A$ is isolated then $f : A \to \mathbb{R}$ is continuous at c.

Let $\epsilon > 0$ be arbitrary

Take $\delta > 0$ such that $V_{\delta}(c) \cap A = \{c\}$, then

$$
|x - c| < \delta \quad \text{and } x \in A \Rightarrow x \in V_{\delta}(c) \cap A
$$

$$
\Rightarrow x = c
$$

$$
\Rightarrow f(x) = f(c)
$$

$$
\Rightarrow |f(x) - f(c)| = 0 < \epsilon
$$

Theorem 0.1.30 let $f : A \to \mathbb{R}$ and $c \in A$. the following statements are equivalent:

- (i) . f is continuous at c
- (ii). $(x_n) \subset A$ and $\lim x_n = c \Rightarrow \lim f(x_n) = f(c)$

If c is a limit point of A then (i) and (ii) are also equivalent with

(iii). $\lim_{x\to c} f(x) = f(c)$

Corollary 0.1.19 let $f : A \to \mathbb{R}$ and $c \in A$ a limit point, f is not continuous at $x = c$ if there exists $(x_n) \subset A$ s.t

- $x \neq c$
- $\lim x_n = c$
- $\lim f(x_n) \neq f(c)$

Continuity and compactness

Theorem 0.1.31 $f : A \to \mathbb{R}$ cont. and $K \subset A$ compact $\Rightarrow f(K)$ compact

Proof: Let $(y_n) \subset f(K)$ be arbitrary

There exists $(x_n) \subset K$ such that $y_n = f(x_n)$ for all n

K compact \Rightarrow some subsequence $x_{n_k} \to x \in K$

 f continuous $\Rightarrow y_{n_k} = f(x_{n_k}) \rightarrow f(x) \in f(K)$

Warning: the previous theorem is false for pre-image:

$$
f^{-1}(K) = \{ x \in A : f(x) \in K \}
$$

Theorem 0.1.32 (Maxima and Minima) Let $K \subset \mathbb{R}$ be compact and f: $K \to \mathbb{R}$ continuous, then f attains a maximum and a minimum on K

Proof (max): $f(K)$ is compact

 $s = supf(K)$ exists and $s \in f(K)$

 $s = f(c)$ for some $c \in K$

s is an upper bound for $f(K) \Rightarrow f(x) \leq s$ for all $x \in K$

Warning: without compactness the previous theorem is false!

Uniform continuity

Theorem 0.1.33 $f : A \to \mathbb{R}$ is uniformly continuous on A if

 $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{such that } \forall x, y \in A \quad |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$

Note: uniform means that δ does not depend on x or y

Logical negation: $\exists \epsilon_0 > 0$ such that $\forall \delta > 0$ $\exists x, y \in A$ for which

 $|x - y| < \delta$ but $|f(x) - f(y)| \ge \epsilon_0$

Theorem 0.1.34 the following statements are equivalent

- (i). $f : A \to \mathbb{R}$ is not uniformly continuous on A
- (ii). There exists $\epsilon_0 > 0$ and $(x_n), (y_n) \subset A$ such that

$$
|x_n - y_n| \to 0 \quad \text{but} \quad |f(x_n) - f(y_n)| \ge \epsilon_0 \quad \text{for all } n
$$

Theorem 0.1.35 if $f: K \to \mathbb{R}$ is continuous and K is compact then f is uniformly continuous on K

Proof: let $\epsilon > 0$ be arbitrary

For all $c \in K$ there exists $\delta_c > 0$ such that

 $|x-c| < 2\delta_c \Rightarrow |f(x)-f(c)| < \frac{1}{2}$ $\frac{1}{2}\epsilon$ for cosmetic purposes

 $O_c = (c - \delta_c, c + \delta_c)$, with $c \in K$, form an open cover for K

 $K \subset O_{c_1} \cup \cdots \cup O_{c_n}$ for some $c_1, ..., c_n \in K$

Take $x, y \in K$ with $|x - y| < \delta = \min\{\delta_{c_1}, ..., \delta_{c_n}\}\$

(1)

$$
|x - c_i| < \delta_{c_i} \quad \text{for some } i = 1, \dots, n
$$
\n
$$
|f(x) - f(y)| < \frac{1}{2}\epsilon
$$

(2)

$$
|c_i - y| \le |c_i - x| + |x - y| < \delta_{c_i} + \delta \le 2\delta_{c_i}
$$
\n
$$
|f(c_i) - f(y)| < \frac{1}{2}\epsilon
$$

Apply triangle inequality with the (1) and (2) we have proved that the theorem holds.

Intermediate value theorem

Theorem 0.1.36 if $f : [a, b] \to \mathbb{R}$ is continuous and

$$
f(a) < L < f(b) \quad \text{or} \quad f(a) > L > f(b)
$$

then $f(c) = L$ for some $c \in (a, b)$

Proof: without loss of generality we can assume

- $L = 0$, otherwise replace $f(x)$ by $f(x) L$
- $f(a) < 0 < f(b)$, otherwise replace $f(x)$ by $-f(x)$

the bisection method gives nested intervals I_n :

At the left endpoint of each I_n we have $f < 0$

At the right endpoint of each I_n we have $f \geq 0$

there exist intervals $I_n = [a_n, b_n]$ such that

- $f(a_n) < 0$ and $f(b_n) \geq 0$
- $I_0 \supset I_1 \supset I_2 \supset \cdots$
- $length(I_n) = (b-a)/2^n$

 $NIP \Rightarrow \exists c \in [a, b]$ such that $c \in I_n = [a_n, b_n]$ \forall

Derivatives

Definition 0.1.20 Let $I \subseteq \mathbb{R}$ be an interval and $f : I \to \mathbb{R}$, f is called differentiable at $c \in I$ if

$$
f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
$$
 exists

Theorem 0.1.37 $f: I \to \mathbb{R}$ differentiable at $c \in I \Rightarrow f$ continuous at c

Proof:

$$
\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} (x - c)
$$

$$
= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} [x - c]
$$

$$
= f'(c) \cdot 0
$$

$$
= 0
$$

Theorem 0.1.38 (Interior extremum theorem) assume

- $f : (a, b) \rightarrow \mathbb{R}$ is differentiable
- f attains a maximum or minimum at $c \in (a, b)$

then $f'(c) = 0$

Proof
$$
(maximum): f(c) \ge f(x)
$$
 for all $x \in (a, b)$

Take sequences (x_n) and (y_n) in (a, b) such that

$$
x_n < c < y_n
$$
 $\forall n \in \mathbb{N}$ and $\lim x_n = \lim y_n = c$

 $f'(c) = 0$ by the order limit theorem:

$$
f'(c) = \lim \frac{f(x_n) - f(c)}{x_n - c} \ge 0
$$

$$
f'(c) = \lim \frac{f(y_n) - f(c)}{y_n - c} \le 0
$$

Warning: for closed intervals the previous theorem may be false!

Theorem 0.1.39 (Darboux's theorem) if $f : [a, b] \rightarrow \mathbb{R}$ is differentiable and α

$$
f'(a) < L < f'(b) \quad \text{or} \quad f'(a) > L > f'(b)
$$

then there exist $c \in (a, b)$ with $f'(c) = L$

Note:

- proof \neq intermediate value theorem applied to f'
- we do not assume f' to be continuous

Proof: restrict to the case $f'(a) < 0 < f'(b)$, Otherwise replace $f(x)$ by $\pm(f(x) - Lx).$

claim: $\exists s \in (a, b) \text{ s.t. } f(s) < f(a)$

Otherwise $f(x) \ge f(a) \,\forall x \in (a, b)$ so that

$$
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \ge 0
$$
 Contradiction!

Similarly: $\exists t \in (a, b)$ such that $f(t) < f(b)$

[a, b] compact and f continuous \Rightarrow f attains a minimum on [a, b]

 $f(s) < f(a)$ and $f(t) < f(b) \Rightarrow f$ attains a minimum in (a, b)

Interior extremum theorem $\Rightarrow f$

Mean value theorem

Theorem 0.1.40 (Rolle's theorem) assume that

- $f : [a, b] \to \mathbb{R}$ is continuous and differentiable on (a, b)
- $f(a) = f(b)$

then there exists $c \in (a, b)$ such that $f'(c) = 0$

Proof: f cont. and [a, b] cpt. \Rightarrow f attains max/min values

$$
f(a) = f(b) \quad \text{both max and min } \Rightarrow f \text{ is constant}
$$

$$
\Rightarrow f'(x) = 0 \text{ for all } x
$$

$$
\Rightarrow \text{ take any } c \in (a, b)
$$

Otherwise, a max or min is attained at $c \in (a, b)$

Then $f'(c) = 0$ by interior extremum theorem

Theorem 0.1.41 (Mean value theorem) if

- $f : [a, b] \rightarrow \mathbb{R}$ is continuous
- f is differentiable on (a, b)

Then there exists $c \in (a, b)$ such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$

Proof: apply Rolle's theorem to

$$
h(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a} (x - a) + f(a) \right]
$$

then

$$
k(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)
$$

$$
h(x) = f(x) - k(x)
$$
 is continuous on [a, b] and differentiable on (a, b)

$$
h(a) = h(b) = 0
$$

By Rolle's theorem: $\exists c \in (a, b)$ s.t.

h

Sequence and Series of Functions

Pointwise convergence

Definition 0.1.21 converges pointwise consider $f_n : A \to \mathbb{R}$

 (f_n) converges pointwise to $f : A \to \mathbb{R}$ if for all fixed $x \in A$

$$
\lim f_n(x) = f(x)
$$

Thus: for each fixed $x \in A$ we have

$$
\forall \epsilon > 0 \quad \exists N_{\epsilon,x} \in \mathbb{N} \quad \text{s.t} \quad n \ge N_{\epsilon,x} \Rightarrow \quad |f_n(x) - f(x)| < \epsilon
$$

Uniform convergence

Definition 0.1.22 Uniform convergence (f_n) converges uniformly to f: $A \rightarrow \mathbb{R}$ if

$$
\forall \epsilon > 0 \quad \exists N_{\epsilon} \in \mathbb{N} \quad s.t \quad n \ge N_{\epsilon} \Rightarrow \quad |f_n(x) - f(x)| < \epsilon \quad \forall x \in A
$$

Note: uniform means that N_{ϵ} is independent of $x \in A$

Theorem 0.1.42 consider $f_n : A \to \mathbb{R}$ then

$$
f_n \to f
$$
 uniformly $\Leftrightarrow \lim_{x \in A} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = 0$

Proof(\Rightarrow): for $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$
n \ge N_{\epsilon} \Rightarrow |f_n(x) - f(x)| < \epsilon \quad \forall x \in A
$$

$$
\Rightarrow \sup_{x \in A} |f_n(x) - f(x)| \le \epsilon
$$

Proof(\Leftarrow): for $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$
n \ge N_{\epsilon} \Rightarrow \sup_{x \in A} |f_n(x) - f(x)| < \epsilon
$$

$$
\Rightarrow |f_n(x) - f(x)| < \epsilon \quad \forall x \in A
$$

Theorem 0.1.43 Preservation of continuity assume $f_n : A \to \mathbb{R}$ satisfies

(i). $f_n \to f$ uniformly on A

(ii). f_n is continuous at $c \in A$ for all $n \in \mathbb{N}$

Then f is continuous at c

Moral: uniform convergence preserves continuity

Proof: for $\epsilon > 0$ there exist

• $N \in \mathbb{N}$ s.t. $|f_N(x) - f(x)| < \frac{1}{3}\epsilon$ for all $x \in A$ • $\delta > 0$ s.t $|x - c| < \delta \Rightarrow |f_N(x) - f_N(c)| < \frac{1}{3}\epsilon$ if $|x-c| < \delta$ then $|f(x) - f(c)| = |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) - f(c)|$ $\leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)|$ $\frac{1}{2}$ $\frac{1}{3}\epsilon + \frac{1}{3}$ $\frac{1}{3}\epsilon + \frac{1}{3}$ $\frac{1}{3}$ ϵ

 $=$ ϵ

Theorem 0.1.44 Term-by-term Continuity Theorem Let f_n be continuous functions defined on a set $A \subseteq \mathbb{R}$, and assume $\sum_{n=1}^{\infty} f_n$ converges uniformly on A to a function f. Then, f is continuous on A

Theorem 0.1.45 Term-by-term Differentiability Let f_n be differentiable functions defined on an interval A, and assume $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly to a limit $g(x)$ on A. If there exists a point $x_0 \in [a, b]$ where $\sum_{n=1}^{\infty} f_n(x_0)$ converges, then the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly to a differentiable function $f(x)$ satisfying $f'(x) = g(x)$ on A. In other words,

$$
f(x) = \sum_{n=1}^{\infty} f_n(x) \quad and \quad \sum_{n=1}^{\infty} f'_n(x)
$$

Theorem 0.1.46 Weierstrass M-test For each $n \in \mathbb{N}$, let f_n be a function defined on a set $A \subseteq \mathbb{R}$, and let $M_n > 0$ be a real number satisfying

$$
|f_n(x)| \le M_n
$$

For all $x \in A$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly on A

Power Series

General form of PS:

$$
\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots
$$

Theorem 0.1.47

$$
\sum_{n=0}^{\infty} a_n x^n
$$
 converges at $c \neq 0$ \Rightarrow
$$
\sum_{n=0}^{\infty} |a_n x^n|
$$
 converges for $|x| < |c|$

Proof:

$$
\sum_{n=0}^{\infty} a_n c^n
$$
 converges \Rightarrow $\lim a_n c^n = 0$
 $\Rightarrow (a_n c^n)$ is bounded

$$
\Rightarrow
$$
 $\exists M > 0$ s.t $|a_n c^n| \le M \ \forall n \in \mathbb{N}$

thus,

$$
|a_n x^n| = |a_n (c \cdot \frac{x}{c})^n| = |a_n c^n| \cdot \left|\frac{x}{c}\right|^n \le M \cdot \left|\frac{x}{c}\right|^n \quad \forall n \in \mathbb{N}
$$

Note: $|x| < |c| \Rightarrow \left|\frac{x}{c}\right| < 1$

Apply comparison test

$$
\sum_{n=0}^{\infty} M \left| \frac{x}{c} \right|^n \quad \text{converges} \quad \Rightarrow \sum_{n=0}^{\infty} |a_n x^n| \quad \text{converges}
$$

Corollary 0.1.23 Radius of convergence There exists $R \geq 0$ such that

- $|x| < R \Rightarrow PS$ converges at x
- $|x| > R$ \Rightarrow PS diverges at x

R is called the radius of convergence

Methods for **computing** R from the a_n 's

Root test: if $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists, then $R = 1/L$

Ratio test: if $L = \lim$ a_{n+1} $\left| \frac{n+1}{a_n} \right|$ exists, then $R = 1/L$

If $L = 0$ then $R = \infty$, that is converges on entire real line.

Proof Root Test: $\lim_{n \to \infty} \sqrt[n]{|a_n x^n|} = L|x| \ \forall x \in \mathbb{R}$ fixed

For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t.

$$
n \ge N \quad \Rightarrow \quad \left| \sqrt[n]{|a_n x^n|} - L|x| \right| < \epsilon
$$
\n
$$
\Rightarrow \quad L|x| - \epsilon < \sqrt[n]{|a_n x^n|} < L|x| + \epsilon
$$
\n
$$
\Rightarrow \quad (L|x| - \epsilon)^n < |a_n x^n| < (L|x| + \epsilon)^n
$$

thus if $|x| < 1/L$, then pick $\epsilon < 1 - L|x|$

Apply comparison test:

$$
L|x| + \epsilon < 1 \quad \Rightarrow \quad \sum_{n=0}^{\infty} (L|x| + \epsilon)^n \text{ converges}
$$

$$
\Rightarrow \quad \sum_{n=0}^{\infty} |a_n x^n| \text{ converges}
$$

$$
\Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \text{ converges}
$$

instead, if $|x| > 1/L$ then pick $\epsilon < L|x| - 1$

$$
L|x| - \epsilon > 1 \Rightarrow (L|x| - \epsilon)^n \text{ unbounded}
$$

$$
\Rightarrow |a_n x^n| \text{ unbounded}
$$

$$
\Rightarrow \sum_{n=0}^{\infty} a_n x^n \text{ diverges}
$$

So far we have discuss only pointwise converge of a power series. Hence, now we will look at uniform convergence

Theorem 0.1.48 Uniform convergence

$$
\sum_{n=0}^{\infty} |a_n c^n| \quad converges \quad \Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \quad uniformly \quad conv. \quad on \quad [-|c|, |c|]
$$

Proof: for $|x| \leq |c|$ we have

$$
|a_n x^n| = |a| \cdot |x|^n \le |a_n| \cdot |c|^n = |a_n c^n| =: M_n
$$

Apply Weierstrass'test:

$$
\sum_{n=0}^{\infty} M_n \quad \text{conv.} \quad \Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \quad \text{unit. conv. on } [-|c|, |c|]
$$

Corollary 0.1.24 Continuity of the limit $\sum_{n=0}^{\infty} a_n x^n$ is continuous function on $(-R, R)$

Proof: take $x_0 \in (-R, R)$ and $|x_0| < c < d < R$, then

- PS convergent at $d \Rightarrow$ PS absolutely convergent at c ⇒ PS uniformly convergent on [−c, c] \Rightarrow PS continuous on $[-c, c]$ each $a_n x^n$ is continuous
	- \Rightarrow PS continuous at x_0

Corollary 0.1.25

$$
\sum_{n=0}^{\infty} |a_n R^n| \text{ convergent} \quad \Rightarrow \quad \sum_{n=0}^{\infty} a_n x^n \text{ uniformly conv. on } [-R, R]
$$

In particular, the PS is continuous on $[-R, R]$

What if convergence is conditional at $x = R$ or $x = -R$?

Lemma 0.1.2 Summation by parts if $s_n = u_1 + \cdots + u_n$, then

$$
\sum_{k=1}^{n} u_k v_k = s_n v_{n+1} + \sum_{k=1}^{n} s_k (v_k - v_{k+1})
$$

Proof: set $s_0 = 0$, then

$$
u_k v_k = (s_k - s_{k-1})v_k
$$

= $s_k(v_k - v_{k+1}) + s_k v_{k+1} - s_{k-1}v_k$ $\forall k = 1, ..., n$

Lemma 0.1.3 Abel's lemma assume that (u_n) and (v_n) satisfy

- $|u_1 + \cdots + u_n| \leq C \ \forall n \in \mathbb{N}$
- $0 \le v_{n+1} \le v_n \ \forall n \in \mathbb{N}$

Then

$$
\left|\sum_{k=1}^n u_k v_k\right| \leq C v_1
$$

Proof: if $s_n = u_1 + \cdots + u_n$, then

$$
\left| \sum_{k=1}^{n} u_k v_k \right| = \left| s_n v_{n+1} + \sum_{k=1}^{n} s_k (v_k - v_{k+1}) \right|
$$

\n
$$
\leq |s_n| v_{n+1} + \sum_{k=1}^{n} |s_k| (v_k - v_{k+1})
$$

\n
$$
\leq C \left(v_{n+1} + \sum_{k=1}^{n} (v_k - v_{k+1}) \right)
$$

\n
$$
= C v_1
$$

Theorem 0.1.49 Abel's theorem

(i). PS converges at $x = R \Rightarrow PS$ conv. uniformly on [0, R] (ii). PS converges at $x = -R \Rightarrow PS$ conv. uniformly on $[-R, 0]$ *Proof(1)*: for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ s.t

$$
n > m \ge N \quad \Rightarrow \quad \left| \sum_{k=m+1}^{n} a_k R^k \right| < \epsilon
$$

Take any $x \in [0, R]$ and set

$$
v_k = \left(\frac{x}{R}\right)^k
$$
, $u_k = \begin{cases} a_k R^k & \text{if } k \ge m+1 \\ 0 & \text{Otherwise} \end{cases}$

From Abel's lemma we get the Cauchy criterion:

$$
\left| \sum_{k=m+1}^{n} a_k x^k \right| = \left| \sum_{k=1}^{n} u_k v_k \right| < \epsilon \cdot \frac{x}{R} \leq \epsilon \qquad \forall x \in [0, R]
$$

Theorem 0.1.50 Term-wise Differentiability Theorem

$$
\sum_{n=0}^{\infty} a_n x^n \quad conv. \quad on \quad (-R, R) \quad \Rightarrow \quad \sum_{n=0}^{\infty} n a_n x^{n-1} \quad conv. \quad on \quad (-R, R)
$$

Proof: if $|c| < 1$, then there exists $M > 0$ s.t

$$
|nc^{c-1}| \le M \quad \forall n \in \mathbb{N}
$$

Let $|x| < t < R$, then

$$
|na_nx^{n-1}| = \frac{1}{t} \left(n \left| \frac{x}{t} \right|^{n-1} \right) |a_nt^n| \le \frac{M}{t} |a_nt^n|
$$

Apply comparison test

Theorem 0.1.51 For any PS with radius R we have

$$
\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} n a_n x^{n-1} \quad \forall x \in (-R, R)
$$

Proof: let $0 \leq c < R$, then

- $\sum_{n=0}^{\infty} na_n x^{n-1}$ converges uniformly on $[-c, c]$
- $\sum_{n=0}^{\infty} a_n x^n$ converges at $x = 0$

Now apply Term-wise Differentiability Theorem

Taylor Series

Assume f is inf. often differentiable on interval around $x = 0$

Definition 0.1.26 The Taylor series of f around $x = 0$ is given by

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n
$$

Definition 0.1.27

$$
s_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k
$$
 partial sum

$$
E_n(x) = f(x) - s_n(x)
$$
 remainder

Lemma 0.1.4 assume that

- $x > 0$ and $h(t)$ is $n + 1$ times diff. ble on $[0, x]$
- $h(x) = 0$ and $h^{(k)}(0) = 0$ for all $k = 0, ..., n$

Then $h^{(n+1)}(c) = 0$ for some $c \in (0, x)$

Proof: repeated application of Rolles's theorem gives

$$
h(0) = h(x) \Rightarrow h'(c_1) = 0 \text{ for some } c_1 \in (0, x)
$$

\n
$$
h'(0) = h'(c_1) \Rightarrow h''(c_2) = 0 \text{ for some } c_2 \in (0, c_1)
$$

\n
$$
\vdots
$$

\n
$$
h^{(n)}(0) = h^{(n)}(c_n) \Rightarrow h^{(n+1)}(c_{n+1}) = 0 \text{ for some } c_{n+1} \in (0, c_n)
$$

Theorem 0.1.52 Lagrange remainder For $n \in \mathbb{N}$ and $x > 0$ there exists $c \in (0, x)$ such that

$$
E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}
$$

if $x < 0$, then $c \in (x, 0)$

Note: c depends on both n and x

Proof: fix $x > 0$ and consider

$$
h(t) = f(t) - s_n(t) - \left(\frac{f(x) - s_n(x)}{x^{n+1}}\right)t^{n+1}
$$

Note that:

$$
h(x) = 0
$$
 and $h^{(k)}(0) = 0, k = 0, ..., n$

The lemma gives $c \in (0, x)$ such that

$$
f^{(n+1)}(c) - s_n^{(n+1)}(c) - (n+1)! \left(\frac{f(x) - s_n(x)}{x^{n+1}} \right) = 0
$$

Rearraging gives

$$
f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}
$$

Taylor series around different points

Assume f is inf. often diff.ble on interval around a

Definition 0.1.28 The Taylor series of f around $x = a$ is given by

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n
$$

Theorem 0.1.53 For $x > a$ there exists $c \in (a, x)$ such that

$$
E_n(x) = f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

if $x < a$ then $c \in (x, a)$

The Riemann Integral

The Fundamental Theorem of Calculus is a statement about the inverse relationship between differentiation and integration. It comes in two parts, depending on whether we are differentiating an integral or integrating a derivative. The Fundamental Theorem of Calculus states that:

• $\int_{a}^{b} F'(x) dx = F(b) - F(a)$ and

• if
$$
G(x) = \int_a^x f(t)dt
$$
 then $G'(x) = f(x)$

Nevertheless, for understand it completely we need first to define Partition, Upper Sums, and Lower Sums:

Definition 0.1.29 Partitions A partitions of $[a, b]$ is a set of the form

$$
P = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}
$$

Let $f : [a, b] \to \mathbb{R}$ be bounded and P be a partition of $[a, b]$

Definition 0.1.30 Lower sum Lower sum of f w.r.t P

$$
m_k = \inf \{ f(x) : x \in [x_{k-1}, x_k] \}
$$

$$
L(f, P) = \sum_{k=1}^n m_k (x_k - x_{k-1})
$$

Let $f : [a, b] \to \mathbb{R}$ be bounded and P be a partition of $[a, b]$

Definition 0.1.31 Upper sum Upper sum of f w.r.t P

$$
M_k = \sup \{ f(x) : x \in [x_{k-1}, x_k] \}
$$

$$
U(f, P) = \sum_{k=1}^n M_k (x_k - x_{k-1})
$$

Note: For a particular partition P, it is clear that $U(f, P) \geq L(f, P)$

Definition 0.1.32 Refinements Q is called a refinement of P if $P \subset Q$. Provided that P and Q are partitions of the same interval.

Lemma 0.1.5 If $P \subset Q$ then

 $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$

Corollary 0.1.33 If $P \subset Q$ then

$$
U(f, Q) - L(f, Q) \le U(f, P) - L(f, P)
$$

Proof (lower sum) Lemma 4.3.4: refine P by adding one point $z \in [x_{k-1}, x_k]$

$$
m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}
$$

\n
$$
m'_k = \inf\{f(x) : x \in [z, x_k]\}
$$

\n
$$
m''_k = \inf\{f(x) : x \in [x_{k-1}, z]\}
$$

Remember that $A \subset B$ then inf $A \geq \inf B$

$$
m_k(x_k - x_{k-1}) = m_k(x_k - z) + m_k(z - x_{k-1})
$$

$$
\leq m'_k(x_k - z) + m''_k(z - x_{k-1})
$$

Then proceed by induction

Lemma 0.1.6 for two partitions P_1 and P_2 we have $L(f, P_1) \leq U(f, P_2)$ *Proof:* let $Q = P_1 \cup P_2$ then $P_1, P_2 \subset Q$ so

$$
L(f, P_1) \le L(f, Q) \le U(f, Q) \le U(f, P_2)
$$

Integrability

Assume $f : [a, b] \to \mathbb{R}$ is bounded

Let P denote the collection of all partitions of $[a, b]$

Definition 0.1.34 The upper integral of f is defined to be

$$
U(f) = \inf \{ U(f, P) : P \in \mathcal{P} \}
$$

The lower integral of f by

$$
L(f) = \sup \{ L(f, P) : P \in \mathcal{P} \}
$$

Lemma 0.1.7 For any bounded function f on $[a, b]$, it is always the case that $U(f) \geq L(f)$

Definition 0.1.35 A bounded function $f : [a, b] \to \mathbb{R}$ is called **Rimann integrable** if $U(f) = L(f)$

Notation:

$$
\int_{a}^{b} f = U(f) = L(f) \quad \text{or} \quad \int_{a}^{b} f(x)dx = U(f) = L(f)
$$

Theorem 0.1.54 Criterion of integrability The following statements are equivalent

- (i) . f is integrable
- (ii). for all $\epsilon > 0$ there exists a partition P_{ϵ} such that

$$
U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon
$$

Proof $(2 \Rightarrow 1)$:

$$
\begin{cases} U(f) \le U(f, P_{\epsilon}) \\ L(f) \ge L(f, P_{\epsilon}) \end{cases} \Rightarrow U(f) - L(f) \le U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon
$$

This holds for all $\epsilon > 0$ so $U(f) = L(f)$

Proof $(1 \Rightarrow 2)$: let $\epsilon > 0$ and choose P_1 and P_2 such that

$$
L(f, P_1) > L(f) - \frac{1}{2}\epsilon
$$
 and $U(f, P_2) < U(f) + \frac{1}{2}\epsilon$

Let $P_{\epsilon} = P_1 \cup P_2$ then

$$
U(f, P_{\epsilon}) - L(f, P_{\epsilon}) \le U(f, P_2) - L(f, P_1)
$$

=
$$
[U(f, P_2) - U(f)] + [L(f) - L(f, P_1)]
$$

$$
< \frac{1}{2} \epsilon + \frac{1}{2} \epsilon
$$

=
$$
\epsilon
$$

Theorem 0.1.55 f continuous on $[a, b] \Rightarrow f$ is integrable on $[a, b]$ Proof: f is uniformly continuous on $[a, b]$

For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$
|x - y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \frac{\epsilon}{b - a} \quad \text{ for all } x, y \in [a, b]
$$

Let P be a partition such that $x_k - x_{k-1} < \delta$ for all $k = 1, 2, ..., n$

There exist $y_k, z_k \in [x_{k-1}, x_k]$ such that

$$
f(y_k) = M_k \quad \text{and} \quad f(z_k) = m_k
$$

Note:

$$
|y_k - z_k| < \delta \quad \Rightarrow \quad M_k - m_k = f(y_k) - f(z_k) < \frac{\epsilon}{b - a}
$$

Thus

$$
U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})
$$

$$
= \frac{\epsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1})
$$

$$
= \frac{\epsilon}{b-a} \cdot (x_n - x_0)
$$

$$
= \frac{\epsilon}{b-a} \cdot (b-a) = \epsilon
$$

Example: any increasing function $f : [a, b] \rightarrow \mathbb{R}$ is integrable

For any partition of $[a, b]$ we have

$$
M_k = \sup \{ f(x) : x \in [x_{k-1}, x_k \}
$$

$$
= f(x_k)
$$

$$
m_k = \inf\{f(x) : x \in [x_{k-1}, x_k\} \\
 = f(x_{k-1})
$$

An equispaced partition P gives

$$
U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})
$$

=
$$
\frac{(b-a)}{n} \sum_{k=1}^{n} [f(x_k) - f(x_{k-1})]
$$

=
$$
\frac{(b-a)(f(b) - f(a)}{n} \to 0 \quad \text{as } n \to \infty
$$

Properties of integrals

Theorem 0.1.56 Split property Let $f : [a, b] \to \mathbb{R}$ be bounded and $c \in (a, b)$, then

f integrable on $[a, b] \Leftrightarrow$ f integrable on $[a, c]$ and $[c, b]$

In that case

$$
\int_a^b f = \int_a^c f + \int_c^b f
$$

Proof (\Rightarrow) : Let $\epsilon > 0$ and pick a partition P of $[a, b]$ s.t.

$$
U(f, P) - L(f, P) < \epsilon
$$

Let $P_c = P \cup \{c\}$ then

$$
U(f, P_c) - L(f, P_c) < \epsilon
$$

Then $Q = P_c \cap [a, c]$ is a partition of $[a, c]$ and

$$
\begin{array}{ll}\nm & := & # \text{ intervals in } Q \\
n & := & # \text{ intervals in } P_c\n\end{array}\n\Rightarrow m < n
$$

 $m < n$ implies

$$
U(f, Q) - L(f, Q) = \sum_{k=1}^{m} (M_k - m_k)(x_k - x_{k-1})
$$

$$
\leq \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})
$$

$$
= U(f, P_c) - L(f, P_c)
$$

$$
< \epsilon
$$

Conclusion: f is integrable on [a, c]. The proof for [c, b] is similar. Proof (\Leftarrow) : Let P_1 and P_2 be partitions of $[a, c]$ and $[c, b]$ s.t

$$
U(f, P_i) - L(f, P_i) < \frac{1}{2}\epsilon, \quad i = 1, 2
$$

Then $P = P_1 \cup P_2$ is a partition of [a, b] and

$$
U(f, P) = U(f, P_1) + U(f, P_2)
$$

$$
L(f, P) = L(f, P_1) + L(f, P_2)
$$

$$
U(f, P) - L(f, P) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon
$$

Conclusion: f is integrable on $[a, b]$

Let ϵ and P_1 and P_2 be as before

$$
\int_{a}^{b} f \le U(f, P)
$$

$$
< L(f, P) + \epsilon
$$

$$
= L(f, P_{1}) + L(f, P_{2}) + \epsilon
$$

$$
\le \int_{a}^{c} f + \int_{c}^{b} f + \epsilon
$$

c

/faculty of Science and Engineering 42

a

a

Let ϵ and P_1 and P_2 be as before

$$
\int_{a}^{c} f + \int_{c}^{b} f \le U(f, P_1) + U(f, P_2)
$$

$$
< L(f, P_1) + L(f, P_2) + \epsilon
$$

$$
= L(f, P) + \epsilon
$$

$$
\le \int_{a}^{b} f + \epsilon
$$

$$
\int_{a}^{c} f + \int_{c}^{b} f \le \int_{c}^{b} f
$$

a

And we have done.

Definition 0.1.36 if f is integrable on $[a.b]$ then

c

a

$$
\int_{a}^{b} f = -\int_{b}^{a} f \quad \text{and} \quad \int_{c}^{c} f = 0 \text{ for all } c \in \mathbb{R}
$$

Theorem 0.1.57 if f, g are integrable on $[a, b]$ then

- $f + g$ integrable and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$
- kf integrable and $\int_a^b kf = k \int_a^b f$ for all $k \in \mathbb{R}$

Theorem 0.1.58 If f is integrable on $[a, b]$ then

$$
m \le f(x) \le M \Rightarrow m(b-a) \le \int_a^b f \le M(b-a)
$$

Proof: for all partitions P of $[a, b]$

$$
L(f, P) \le \int_a^b f \le U(f, P)
$$

Taking $P = \{a, b\}$ gives

$$
U(f, P) = (b - a) \cdot \sup\{f(x) : x \in [a, b]\} \le M(b - a)
$$

$$
L(f, P) = (b - a) \cdot \inf\{f(x) : x \in [a, b]\} \ge m(b - a)
$$

Theorem 0.1.59 if f, g are integrable on $[a, b]$ then

$$
f(x) \le g(x)
$$
 for all $x \in [a, b] \Rightarrow \int_a^b f \le \int_a^b g$

Proof: since $0 \leq g(x) - f(x)$ for all $x \in [a, b]$ we have

$$
0 \cdot (b - a) \le \int_a^b (g - f) \Rightarrow 0 \le \int_a^b g - \int_a^b f
$$

Theorem 0.1.60 If f is integrable on $[a, b]$ then $|f|$ is integrable and

$$
\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|
$$

Proof: Let P be any partition of $[a, b]$ and

$$
M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}
$$

\n
$$
m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}
$$

\n
$$
M'_k = \sup\{|f(x)| : x \in [x_{k-1}, x_k]\}
$$

\n
$$
m'_k = \inf\{|f(x)| : x \in [x_{k-1}, x_k]\}
$$

claim: $M'_k - m'_k \leq M_k - m_k$

For all $\epsilon > 0$ there exist $y, z \in [x_{k-1}, x_k]$ s.t

$$
M'_{k} - \frac{1}{2}\epsilon < |f(y)|
$$
\n
$$
m'_{k} + \frac{1}{2}\epsilon > |f(z)|
$$

$$
M'_{k} - m'_{k} - \epsilon < |f(y)| - |f(z)|
$$
\n
$$
\leq |f(y) - f(z)|
$$
\n
$$
\leq M_{k} - m_{k}
$$

$$
M'_k - m'_k \leq M_k - m_k
$$

Let P any partition of $[a, b]$ then

$$
U(|f|, P) - L(|f|, P) = \sum_{k=1}^{n} (M'_k - m'_k)(x_k - x_{k-1})
$$

$$
\leq \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})
$$

$$
= U(f, P) - L(f, P)
$$

Thus,

$$
-|f(x)| \le f(x) \le |f(x)| \Rightarrow -\int_{a}^{b} |f| \le \int_{a}^{b} f \le \int_{a}^{b} |f|
$$

$$
\Rightarrow \left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|
$$

The fundamental theorem of calculus

Theorem 0.1.61 FTC part 1 assume that

- (i). f is integrable on $[a, b]$
- (*ii*). F is differentiable on $[a, b]$ and

$$
F'(x) = f(x) \quad \forall x \in [a, b]
$$

Then

$$
\int_a^b f = F(b) - F(a)
$$

Proof: let P be any partition of $[a, b]$

$$
F(b) - F(a) = \sum_{k=1}^{n} [F(x_k) - F(x_{k-1}))
$$

By the MVT = $\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$ $t_k \in (x_{k-1}, x_k)$
 $\leq \sum_{k=1}^{n} M_k(x_k - x_{k-1})$
 $= U(f, P)$
 $\geq L(f, P)$

let P be any partition of $[a, b]$, then

$$
L(f, P) \le F(b) - F(a) \le U(f, P)
$$

Taking sup/inf over all partitions gives

$$
L(f) \le F(b) - F(a) \le U(f)
$$

Since f is integrable it follows that

$$
L(f) = U(f) = F(b) - F(a)
$$

Theorem 0.1.62 FTC part 2 let f be integrable on $[a, b]$ and define

$$
F(x) = \int_{a}^{x} f(t)dt \quad \text{where } x \in [a, b]
$$

Then

(i). F is uniformly continuous on $[a, b]$

(ii). if f is continuous at c , then F is differentiable at c and

$$
F'(c) = f(c)
$$

Proof(1) since f is integrable on [a, b] there exists $M > 0$ s.t.

$$
|f(x)| \le M \quad \forall x \in [a, b]
$$

If $x, y \in [a, b]$ with $x \geq y$, then

$$
|F(x) - F(y)| = \left| \int_y^x f(t)dt \right|
$$

\n
$$
\leq \int_y^x |f(t)|dt
$$

\n
$$
\leq M|x - y|
$$

For given $\epsilon > 0$ take $\delta = \epsilon/M$.

Proof(2): for $x \neq c$ we have

$$
\frac{F(x) - F(c)}{x - c} - f(c) = \frac{1}{x - c} \int_c^x f(t)dt - f(c)
$$

$$
= \frac{1}{x - c} \int_c^x f(t) - f(c)dt
$$

Let $\epsilon > 0$ be arbitrary and pick $\delta > 0$ s.t

$$
|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon
$$

Since $|t - c| \leq |x - c| < \delta$ it follows that

$$
\left| \frac{F(x) - F(c)}{x - c} - f(c) \right| = \frac{1}{|x - c|} \left| \int_c^x f(t) - f(c) dt \right|
$$

$$
\leq \frac{1}{|x - c|} \cdot |x - c| \cdot \epsilon
$$

$$
= \epsilon
$$